Tag Archives: Testing

More Food Labs Using Certified Reference Materials

By Karin Pauly
No Comments

A notable section of the Food Safety Modernization Act (FSMA) calls for the development and implementation of model laboratory standards.  To ascertain the level of laboratory standards currently employed by food laboratories, a laboratory testing services company commissioned a survey of laboratory directors, quality assurance managers and technical supervisors.  One area of questioning focused on certified reference materials (CRM).

According to a recent survey, more than 50% of laboratory directors, quality assurance managers and technical supervisors report using certified reference materials.
According to a recent survey, more than 50% of laboratory directors, quality assurance managers and technical supervisors report using certified reference materials. (Click to enlarge)

In response to whether their laboratory uses CRM, 65% of respondents said yes. Most of the remaining survey respondents (31%), volunteered that they sometimes use these materials, if required. Only 4% replied “No” (see Figure 1).

The responses are significant in that they provide a glimpse into current food laboratory quality practices.  FSMA tasks the U.S. Department of Health and Human Services with making certain that analytical procedures and quality systems are established and followed.  Yet, it is not clear what procedures and systems are currently employed.  This survey provides a baseline measure from a segment of the food laboratory community, indicating, that a majority of respondents use certified reference materials.

Quality Controls vs. CRM

A food laboratory aims to provide the correct result every time a test is performed. In order to achieve this consistency and reliability, laboratories should use standard measurements, known as quality controls. Quality controls are essentially the stable norm against which testing processes and instruments may be assessed. By using quality controls, it is possible to find areas in the testing process that may be weak or failing.

CRM, used as a form of quality control, are highly characterized, homogenous, authenticated control materials. Food laboratories often have options available for obtaining commercially sourced materials for quality controls, but not all of these options are well characterized or authenticated. CRM are used by laboratories to assess the quality of method validation as well as to trace to an established standard. In the food lab, CRM help provide a level of certainty in the results when instruments and processes are validated and verified. CRM may be obtained from accredited producers, as established under ISO Guide 34.

The survey also asked whether on-site and contract laboratories use quality controls. Interestingly, not all laboratories surveyed are using quality control materials as part of their testing processes and procedures.  For on-site laboratories, 81% of survey respondents acknowledged using quality control materials. For contract laboratories, the number slips to 67%.  For survey respondents not using quality control materials, it is unknown if or how their test results are validated and verified.

Quality control is a basic component of laboratory testing as well as a requirement for accreditation.  Whether CRM or non-certified reference materials are used, quality controls are important components needed to ensure test results are valid and reliable for food consumers and industry alike.  As future FSMA rules on model standards are likely to address this essential provision of laboratory testing, these survey results support the use of CRM.

The survey discussed in this article was commissioned by Microbiologics, Inc.

Why Should Food Manufacturers Consider Lab Automation?

By Dr. Christine Paszko
No Comments

Food manufacturers that think strategically understand that labor efficiency is a measure of how effectively a workforce completes a task in comparison to industry. Companies frequently access efficiency and other metrics to identify weak points in their operations, with the end goal of enhancing data quality and streamlining costs. This approach has led many food and beverage manufacturers to embrace lean manufacturing and six sigma programs in their organizations. These leaders have a clear understanding that labor is money (or money is stored labor), and money equals margins. Food and beverage manufacturers often acquire several raw materials and convert them into finished products for consumers to purchase. These manufacturers have found that robotics and automation have greatly increased productivity and enhanced product quality while maximizing resources and profitability.

LIMS offer a variety of benefits. Image courtesy of ATL
LIMS offer a variety of benefits. Image courtesy of ATL

Ease Operations with Automation

Analytical testing laboratories within food manufacturing firms leverage LIMS to realize automation savings. LIMS is an acronym for Laboratory Information Management System, which can also be a manual paper/Excel based solution, however, this article will focus on completely automated, computerized, enterprise, software solutions. Manual systems are cumbersome, costly, and lack efficiency.

Just as automation and robotics have transformed the food manufacturing process, intelligent laboratory operations leverage LIMS, because it enables increased quality and faster turnaround, while providing significant cost savings. LIMS are computerized systems that organize, manage and communicate all of the laboratory test data and related information such as Standard Operating Procedures (SOPs) and Certificates of Analysis (COAs), final analysis reports, invoices, nutritional labels, formulations and information to support an organization’s operations and meet regulatory compliance goals.

Traditional LIMS facilitate overall laboratory organization, from sample management to test data to final reporting and disposal. LIMS begin with sample management and typically the generation of barcoded labels (of a unique identification number), testing is automatically assigned based on project or sample type (Note: Additional tests can be added or deleted, and ad hoc samples can also be logged). Some laboratories test all raw materials that arrive to confirm acceptance criteria against the COA, in addition to in-process, final product testing and environmental testing. Once samples are logged into the system, worklists are created in the LIMS of the samples to be run and the information is scanned via barcode and sent to the instrument controller. Tests that include associated quality control data are run by loading instruments. Results are electronically imported back into the LIMS from instrumentation (this is the most common and most efficient method). For manual, subjective tests that require interpretation, results must be entered into the LIMS by hand. Managers can also manage and track samples that have been subcontracted to other laboratories (i.e., for testing capabilities that do not exist internally). Once the subcontracted data is submitted back to the laboratory in an electronic format, it can be directly imported into the LIMS, and all data related to the sample is stored in a single, secure database.

Automation significantly reduces cost, enhances quality and provides a means to rapidly scale production. This image shows a cheese processing plant. Image courtesy of ATL
Automation significantly reduces cost, enhances quality and provides a means to rapidly scale production. This image shows a cheese processing plant. Image courtesy of ATL

This approach offers a major advantage, especially to global operations, due to the ability to deliver real-time data across an enterprise. End-users can leverage the technology to make intelligent buying decisions based on product specifications of incoming raw materials, customer demand, specification criteria and blending simulations.

Managers can view a variety of metrics, including the number of samples that have been run for a particular product, statistical process control charts, instruments in service for workload management, and supplier performance in any given period. Complete product traceability is possible.

LIMS has evolved to manage many additional functions, such as communications with ERP/SAP systems, shelf life studies, performing skip lot testing, formulations, and field and plant data collection by integration with tablets and smartphones for real-time updates, managing competitive analysis data as well as special projects. A few of the major areas in which LIMS are leveraged include:

  1. Sample management of all testing initiated
  2. Quality assurance (including in process quality checks)
  3. Workflow management (optimization of processes)
  4. Regulatory compliance (FSMA, GFSI, HACCP, FDA)
  5. Specification management, formulations and blending
  6. Dashboards for real-time updates (in a single site or across operations)
  7. Customer relationship management (organizing and responding to customer inquiries)
  8. Reporting (COA, final analysis and invoice reports)
  9. Inventory management and product release

Enabling Standardization

A LIMS not only enhances communication across a laboratory, but also across a global organization with multiple sites, ensuring effective cooperation and relationships between suppliers, production and customers. A LIMS promotes standardization in global firms and gives management teams real-time data access from site to site, so that data is readily available for better management and resource allocation decisions. Standardization makes business and financial sense, as organizations can realize cost savings in buying testing equipment and supplies in larger quantities, exchanging staff to different sites (potentially reducing training costs), and managing a user-friendly, single secure database that supports localization (each site can implement LIMS in its native language). Standardization does not mean that systems must be ridged; each facility can leverage its own unique workflows and terminology while saving data to a standard database format.

A LIMS can manage an entire organization’s laboratory SOPs or work instructions, and documents associated with the following:

  • Laboratory testing
  • Assets
  • Inventory
  • Laboratory chemicals
  • Supplies
  • Formulations
  • Blending
  • Automated calculations
  • Customer interactions
  • Employee training records
  • Laboratory instrumentation
  • Purchase orders
  • Sample storage
  • Reporting
  • Invoicing
  • Facilitating governmental laboratory compliance requirements

Today, LIMS’ have expanded to manage all aspects of laboratory operations and have significant overlap with ERP, SAP systems and other enterprise solutions. The goal is to move away from multiple separate databases and distinct islands to one centralized data management solution. Amazingly, some laboratories do not make the investment in new LIMS technology and continue use in-house created database systems, manual paper systems and Excel spreadsheets (or a combination of these systems) to manage portions of the critical product testing data. These systems are often costly, labor intensive, subject to data loss, and difficult to manage and maintain.

A LIMS ensures that analytical resources have been best utilized to maximize productivity and efficiency to generate high-quality data to support operations, while facilitating regulatory compliance goals. Organizations that embrace quality often leverage technology such as LIMS, and typically hold ISO 17025 certification and embrace six sigma, lean manufacturing and other best practices.

Robotics has transformed food manufacturing to allow greater volumes of final product to be produced, with an emphasis on speed, standardization, consistent product quality and volume, with increased efficiency and cost savings. LIMS’ have transformed the manufacturing process and the laboratory analysis process from raw material testing to in-process /environmental testing and finished product testing. For example, on-line monitors can feed data into an LIMS (i.e. flow, temperature from freezers or incubators), and if there are any alarming data points, instant notification is provided to the team via email or a phone call. This rapid response saves time for a corrective action to be put into place. Within the laboratory, if a shelf life study is underway and the incubator fails, an alert can be sent after one out-of-range temperature measurement, allowing the problem to be corrected and the study saved, versus having to start over.

The analytical testing group in any food and beverage testing facility generates hundreds, thousands, even millions of data points a year. They gather data on raw materials (based on COAs), in-process manufacturing (quality checks, statistical process control and specification confirmation), environmental monitoring, and finished product testing as well as performing competitive analysis. These are some of the main areas that are impacted by sample collection and testing. LIMS and laboratory automation have transformed the way that data is collected, monitored and analyzed. Today’s LIMS’ are based on modern technology, providing a valuable tool to ensure that product is within specification, and collected and disseminated in real-time to improve efficiency, reduce costs, increase profitability.

Lab technicians use the Hunter device during a test process. InstantLabs manufactures the Hunter system as well as test kits for food pathogens and species identification such as the catfish testing commercialization agreement outlined with the FDA.

New Catfish Test Catches Mislabeling Faster

By Maria Fontanazza
No Comments
Lab technicians use the Hunter device during a test process. InstantLabs manufactures the Hunter system as well as test kits for food pathogens and species identification such as the catfish testing commercialization agreement outlined with the FDA.

As Americans seek to make healthier choices, seafood is becoming more popular than ever before. In fact, U.S. consumers eat 50% more seafood now than they did 50 years ago and spend $80 billion annually on creatures from the sea, according to Oceana. Coupled with the increasing popularity is the growing problem of seafood fraud and mislabeled imports. Oceana’s study in 2013 performed DNA testing on seafood samples taken around the United States and found that nearly 33% of those samples were mislabeled.

FDA has made a significant investment in DNA sequencing to improve its ability to detect misrepresented seafood species in interstate commerce and from other countries. “The Agency has trained and equipped eight field laboratories across the country to perform DNA testing as a matter of course for suspected cases of misbranding and for illness outbreaks due to finfish seafood, where the product’s identity needs to be confirmed,” stated Steven M. Solomon, deputy associate commissioner for regulatory affairs at FDA, before the U.S. Senate’s Committee on Small Business and Entrepreneurship in May. “FDA also trained analysts from the U.S. Customs and Border Protection (CBP) and the National Marine Fisheries Service in its new DNA-based species identification methodology.”

With some of the most common seafood choices including white fish varieties like tilapia and catfish, DNA-based testing plays a critical role in detecting mislabeling of species.  If you’re a knowledge seafood person and you get a whole fish, there’s a high likelihood you can identify it correctly,” says Steven Guterman, CEO of InstantLabs. “However, once that fish has been filleted—let’s call it a white fish—it’s almost impossible for anyone to visually correctly identify that fish. That’s where the DNA testing comes into play.”

Lab technicians use the Hunter device during a test process. InstantLabs manufactures the Hunter system as well as test kits for food pathogens and species identification such as the catfish testing commercialization agreement outlined with the FDA.
Lab technicians use the Hunter device during a test process. InstantLabs manufactures the Hunter system as well as test kits for food pathogens and species identification such as the catfish testing commercialization agreement outlined with the FDA.

InstantLabs offers a series of DNA-based seafood tests for species identification. Last week the company announced a partnership with FDA to co-develop and commercialize a new Ictalurid catfish species identification test that enables much faster sequencing of samples and at a lower cost. “I think everyone is recognizing that the current method industry uses for validation, which is to take a sample and send it out to a lab for sequencing, just takes too long,” says Guterman. There is a typical time lag of about one to two weeks from taking a sample to getting a result.

The Hunter System is a real-time PCR instrument that delivers results in a much shorter period of time. “Switching from a sequencing test to a PCR test where you’re looking for a specific target DNA and getting results on site in two hours, or in a laboratory within a day, changes the way the industry operates,” says Guterman. “It enables better enforcement, and government regulators and suppliers can do validation in a way that’s not disruptive to their normal course of business.”

FDA and InstantLabs began talking about the technology about a year ago, as both have worked closely with the University of Guelph, according to Guterman. FDA was looking for a company that would be able to commercialize a test kit for U.S. catfish, and the new partnership is part of a Cooperative Research and Development Agreement (CRADA) with the agency. U.S. Farm Bill legislation states that only members of the Ictaluridae family can be legally marketed as catfish within the United States.

The FDA-InstantLabs CRADA collaboration will help ensure the integrity of labeling related to U.S. catfish. The Pangasiidae species, which hails from Southeast Asia, has been increasingly mislabeled as U.S. catfish. This is not only a concern from a cost standpoint but also a safety perspective, as FDA has detected toxins in catfish that come from Asia.

Environmental Monitoring Programs and The Cost of Failure

What happens when a food company does not have an effective environmental monitoring program in place? The cost of failure can be significant, warns Prof. Ann Draughon, ranging from placing contaminated food in the markets, to managing product recalls, and businesses getting shut down.

Effective Environmental Monitoring, Sampling and Testing (EMS) Programs are absolutely necessary to protect our consumers, and make safe food, and are also required from a regulatory and food safety point of view, and to verify that our food safety programs are working.

In a recent webinar, Prof. Ann Draughon offered some insights on what happens when such an EMS program is not set in place – the cost of failure is much greater, and the repercussions can be severe, she warns.

What is on the horizon with EMS given the new regulatory landscape under the Food Safety Modernization Act and the proposed rules? Prof. Draughon talked about the Mandatory Preventive Controls described in Section 103 of the Act that lists the following controls that FDA will require:

  • Environmental monitoring programs;
  • Sanitation and cleaning requirements;
  • Allergen control;
  • Mitigation of hazards; and
  • Supplier verification.

How will FSMA affect FDA’s regulatory sampling of food facilities and products? The volume of environmental samples will increase at a much higher rate than sampling for allergens or ingredients, she adds. And in order to meet such a high demand for environmental inspection and sampling, it will be important to have in place effective EMS programs. Prevention will be cost-effective and give companies the ability to detect and destroy the microorganism before they cause any issues. Prof. Draughon provided the following numbers as cost of reinspection: $224 per hour for domestic inspections, $325 per hour for foreign inspections, and cost of FDA reinspection in FY 2012 estimated to be around $21,000.

She described two case studies of companies that suffered bankruptcy, and business losses due to massive food safety related recalls, caused by inadequate or lack of environmental monitoring programs.

3M-Envi-Monitoring_March2015-1

“This company is currently bankrupt due to a massive recall. While they had a great food safety plan, they did not back it up with a strong EMS program,” Prof. Draughon explained.

Speaking about the second company, she explained that the strong and capable leadership had done everything right for the company, but what went wrong? “There was a:

  • 3M-Envi-Monitoring_March2015-2Lack of trend analysis of environmental data;
  • Lack of communication within company about any positives Listeria results;
  • Sporadic Listeria positives occurred – while the problem was fixed, they continue to reoccur and the source was never detected or fixed;
  • The company had a reactive EMS, but not proactive,” she explained.

What are some of the recurring problems due to ineffective EMS programs? Prof. Draughon listed these as:

  • Increased risk of recall;
  • Increase loss of product;
  • Increased liability exposure;
  • Build-up of pathogens and spoilage agents or chemicals in environment;
  • Lack of regulatory compliance; and
  • Reaction to problems, not prevention.

Based on this high cost of compliance, Prof. Draughon strongly recommended establishing an effective EMS program, which has the following attributes:

  • Focus on having the appropriate indicators and hazards;
  • Ensure the best procedures selected and validated;
  • Strong sampling plan, which is well-designed and dynamic;
  • Data analysis and data management; and
  • Education and training.

Learn more by listening to the series of webinars on Environmental Monitoring, presented by 3M Food Safety. Click here for more details.

Four Large Retailers Asked to Stop Selling ‘Mislabeled’ Herbal Supplements

The New York Attorney General’s office has ordered Walmart, Target, Walgreens and GNC to stop selling “mislabeled” herbal supplements, after independent lab tests of these supplements have revealed that they do not contain ingredients as stated on the labels.

NY Attorney General Eric Schneiderman has sent cease-and-desist letters to all four companies demanding that they stop selling their store-brand herbal supplements because DNA barcoding showed that 79 percent of them either didn’t contain the stated ingredient(s), or were contaminated by other filler materials such as rice and wheat to which some people might be allergic. The companies have been asked to respond by February 9, with information about how their store-brand supplements are processed, according to a NY Times report.

“The topic of purity (or lack thereof) in popular herbal dietary supplements has raised serious public health and safety concerns, and also caused this office to take steps to independently assess the validity of industry and advertising,” the letters stated, adding that “Contamination, substitution and falsely labeling herbal products constitute deceptive business practices and, more importantly, present considerable health risks for consumers.”

Tests were done at the request of the New York AG’s office on the following store-brand supplements: Ginkgo Biloba, St. John’s Wort, Ginseng, Echinacea, Valerian Root, Garlic and Saw Palmetto. Three to four samples of each supplement purchased in different parts of the state were tested. Each sample was tested five times, for a total of 390 tests on 78 samples.

Only 4 percent of Walmart’s supplements (“Spring Valley” brand) actually contained the ingredients listed on the label, while 18 percent did at Walgreens (“Finest Nutrition” brand), 22 percent at GNC (“Herbal Plus” brand), and 41 percent at Target stores (“Up & Up” brand). Only the GNC garlic consistently tested as advertised, according to the AG’s office.

A Walmart spokesperson has said that the retailer is immediately reaching out to the suppliers of these products to learn more information and will take appropriate action. Walgreens agreed to remove the products from its stores across the country, even though only New York was requiring it to do so. GNC confirmed that the products in question had been removed from its store shelves.

Creighton R. Magid is a partner at the international law firm Dorsey & Whitney and head of its Washington DC office, supported Attorney General Schneiderman’s actions and described that “he is taking aim at these herbal supplements not by attacking their efficacy or health risk, which would be more difficult to prove, but by alleging false labeling – something that can presumably be proved with a lab test to establish the actual ingredients.”

“Unless the manufacturers or retailers can show that the ingredients of these products are as shown on the labels – and not merely powdered versions of a junior high lunch – these products will probably start disappearing from store shelves rather quickly,” Magid added.

Developing an Effective Environmental Monitoring, Sampling and Testing Program

By Food Safety Tech Staff
1 Comment

As the food industry is moving toward a more preventive food safety strategy, environmental monitoring is playing an increasingly critical role in testing. Hazard analysis is shifting the focus from finished product testing to proactively testing the environment and the processing as critical control points to continuously monitor and reduce risk. Today many facilities are adding or strengthening their environmental monitoring programs to enhance their food safety risk reduction efforts.

In a recent webinar, Ann Draughon, Emeritus Professor of Food Microbiology and Toxicology, University of Tennessee spoke about Developing an Effective Environmental Monitoring, Sampling and Testing (EMS) Program. We present some excerpts from her presentation.

What do you need to get started with an EMS program?

“You need to first identify the right team; think about what kind of food you are processing (raw products or ready-to-eat products) and if it has had any food safety outbreak associated with it; determine critical or hygiene zones in your facility; determine sample locations; finalize which indicator tests will be done, and in which zones; determine which pathogens you will test for; choose the right test methods; set a baseline, and link that with your sampling plan, and establish testing frequency once you have finalized the number of samples and zones,” explains Draughon.

To establish critical hygiene zones, she advises to:

  • Survey entire facility and have a map of that facility;
  • Study that map and identify traffic patterns to divide the facility into critical hygiene zones, GMP zones, and non-processing zones;
  • Put in place barriers between these zones and dedicate equipment to the critical hygiene zone, and restrict access between zones; and
  • Establish strict cleaning, sanitation and monitoring plans for these diff zones.

Sampling of zones should be based on risk of contamination and/ or transmission of pathogens to food from environment, says Draughon. The sampling should also take into account potential sources of product contamination by whatever means during food processing (see image 1 for examples of 4 zone and 3-zone hygiene systems).

Selecting the right assays for your EMS program

There are many options, and it can be confusing to select the right assay for your needs. Draughon advises that companies need to look their monitoring needs and consider both indicator bacteria and pathogenic bacteria to select the right assay.

For monitoring with indicator bacteria, most companies look at ATP for environmental sanitation, often before start-up to make sure facility is clean before processing begins. Protein assays are also used to pick up any allergen on equipment.

APC or total viable count is a simple assay offering many choices, which tests for the number of live bacteria on your equipment or in your environment that can grow under air or oxygen at room temperature.

Yeast/ mold count assays are good for two purposes: 1. Mold frequently is the cause of spoilage in food, so it’s useful to understand if there are any present to determine shelf life, and 2. It also helps us understand the number of particulates in the air.

We can also select specific microbial groups as indicators, such as total Enterobacteriacae, fecal coliform or E.coli or Listeria species.

Sample collection and prep

When we collect a sample, we have to clearly document the sample including information such as when it was taken, from where, by whom, what happened to that sample etc. Use clean SOPs to reduce error. Use the assays previously selected and do it as quickly as feasible. If you are working with an outside company, decide how they are going to handle the sample. Finally, always keep in mind plant safety and leave nothing behind after sampling, and avoid cross-contamination.

For characterizing pathogens, you may want to genetically fingerprint any pathogenic isolates from your facilities. This will allow you to see if you have a constant harborage of a particular pathogen or if it changes. Draughon recommends using a contract lab for characterizing pathogens, as they would be better suited, and have better resources to do this. Destroy the isolates after characterization – you don’t want any chance of the pathogen spreading into the product or the environment.

Written SOPs for EMS programs

It’s critical to have clear written SOPs for EMS programs which include the following:

  • Frequency of sampling;
  • When, where , how and duration of sampling;
  • Procedure for recording data and coding;
  • Sample number, size or volume;
  • Specific sampling and analysis validated protocols;
  • Monitoring of incubators and use of equipment;
  • Handling and shipping of samples; and
  • Alert and action levels and appropriate response to deviations from alert or action levels.

It’s also important that we train and validate the personnel performing EMS. Each individual doing this needs to demonstrate proficiency of doing this. They need to understand proper recording of EMS program data, alert and action levels, and zero tolerance levels. The personnel should be comfortable and qualified for sampling protocol, and using all the equipment.

In summary, sampling plans should be adaptable, which highest risk sites being tested initially. Establish a baseline and modify sampling plan as needed. Establish your sampling and testing criteria and sample as needed with each zone to fully assess the environmental program.

Mitigate Food Contamination Risk

Whether mycotoxins or microbiological values, heavy metals or pesticides – independent sampling and testing provide an objective and comprehensive overview of what food products contain and help comply with food safety regulations.

Nuts containing mould, frozen strawberries contaminated with hepatitis pathogens, and pesticide-laden vegetables – more than 3,000 products were objected by EU authorities in 2013. With increasing government, industry and consumer concerns about the hazards of food contaminants, and the risks they pose, food manufacturers, governments and non-governmental agencies, are implementing policies and processes to monitor and reduce contaminants.

Key food contaminants

Food contaminants cover a wide range of potential substances including:

  • Dioxins: Produced as unintentional by-products of industrial processes such as waste incineration, chemical manufacturing and paper bleaching, dioxins can be found in the air, in water and contaminated soil.
  • Allergens: Virtually all of the known food allergens are proteins that can subsist in large quantities and often survive food processing.
  • Genetically modified organisms (GMOs): Banned in a number of countries, controversy still exists with regard to the use of GMOs. Selling food and/or feed that is non-GMO in restricted markets places the burden of proof on the supply chain.
  • Heavy metals: Whilst heavy metals, such as lead (Pb), cadmium (Cd), mercury (Hg) and arsenic (As), can be found in nature, industrial and environmental pollutants have resulted in their increased presence in food and feed.
  • Hormones: Commonly used in animal husbandry to promote growth, hormone residues can be found in the food supply.
  • Melamine: Harmful to animal and human health, melamine is not a permitted food additive.
  • Mycotoxins: Produced by several strains of fungi found on food and feed products, mycotoxins are often invisible, tasteless, and chemically stable both at high temperatures and during long periods of storage.
  • Pesticide residues: Over-use of pesticides can lead to dangerous levels of hazardous chemicals entering the food chain with fresh fruit and vegetables being most susceptible to pesticide residues.
  • Polychlorinated biphenyls (PCBs): Used in many products, some PCBs are toxic and stable enough to resist breaking down even when released into the environment.
  • Radiation contamination: There are three ways that foodstuffs can become contaminated by radiation: surface, ground and water contamination.
  • Veterinary drug residues: Used in the treatment of animals, veterinary drugs can leave residues in animals subsequently sent into the food chain. The impact of contaminants varies. Depending on their toxicity and the level of contamination their effects can range from causing skin allergies, to more serious illnesses (including cancers and neurological impairments) and, in the most extreme cases, death.

To ensure that your food and feed products are fit for consumption, you need to test for specific contaminants throughout the value chain. For example, in concentrated levels, melamine, antibiotics and hormones can be harmful to animals and humans. Only thorough contaminant testing will determine if the above-mentioned impurities, among others, are present. After identification the relevant goods can be eliminated from the production and distribution chain.

Maximum levels and regulations

In order to protect consumers, maximum levels permitted in food products have been set by food safety legislation in many countries. Disappointingly, and despite efforts in some product areas, maximum levels are rarely harmonized across national borders. This inconsistency places responsibility for compliance firmly with the food supply chain. A comprehensive testing program can verify that your products meet maximum levels and the safety standards they represent.

In the European Union (EU), it is the food business operator who carries primary responsibility for food safety and the General Food Law Regulation (EC) 178/20022 is the primary EC legislation on general food safety. More specific directives and regulations compliment this, for example, EU regulations concerning non-GMO/GMO products, include Directive 2001/18/EC and regulations 1829/2003 and 1830/2003.

The U.S. Food and Drugs Administration has overseen the development and signing into law of the Food Safety Modernization Act (FSMA). Within the U.S., state regulators retain the right to apply additional regulations and laws. As result, rules regarding maximum levels, for example, vary from state to state.

In China, the Food Safety Law (FSL) was passed into law by the Chinese government in 2009. It introduced enhanced provision for monitoring and supervision, improved safety standards, recalls for substandard products and dealing with compliance failures.

Brazil’s food safety agency, Anvisa, coordinates, supervises and controls activities to assure health surveillance over food, beverages, water, ingredients, packages, contamination limits, and veterinary residues for import. No specific restrictions have been established yet for export.

Monitoring

Monitoring programs are frequently used to identify any contamination issues. From seeds, through the growing process and harvest, transportation, collection, storing and processing to the market channel, independent monitoring delivers credible and independently collected data on both quality and contaminants.

With so many policies and standards, both nationally and internationally, anyone involved in the food industry needs to be sure of accurate and up-to date information on food contaminant regulations. Whether mycotoxins or microbiological values, heavy metals or pesticides – independent sampling and testing provide an objective and comprehensive overview of what grain and food products contain.

For more information, please visit: www.SGS.com/foodsafety.

Sangita Viswanathan, Former Editor-in-Chief, FoodSafetyTech

Using Microbiology Studies to Support your Product

By Sangita Viswanathan
No Comments
Sangita Viswanathan, Former Editor-in-Chief, FoodSafetyTech

What is a Special Project? These are special testing projects that are not typically covered by laboratory testing when you run into a question that you really can’t answer, says Centrella. Special projects can be used for:

  • Development, validation or implementation of a new testing method;
  • Comparing performance of a new testing platform against a standard;
  • Validation of pathogen control, for instance, to check effectiveness of CCPs;
  • Shelf-life investigation;
  • Verification of effectiveness of antimicrobials; and
  • Determination of whether a product requires refrigeration.

With method validation, the situation can be that you work with PCR for Salmonella, and there are certain number of matrices approved, but you want to take advantage of that method and extend the matrix. So special projects can help you answer if that method would be suitable for your product.

Another category of special projects is pathogen control. In this situation, you can see if you have a process or an ingredient that’s in your product, or simulate that intervention in a lab setting (either heat or cool step or a treatment like a wash) to check for pathogen growth. In this case, the target matrix is inoculated with high level of analyte, and the aim is to show large log reduction, or even complete elimination, once the matrix is treated with the intervention.

Shelf-life studies is another example of special projects. In this case, we simulate retail storage of the product to determine expected shelf life or determine typical storage conditions. Here, assay are prepared to assess threats to product shelf-life, microbial, chemical or nutritional in nature. Such threats could be build-up of lactic acid due to bacterial activity, or might be gas-producing microorganisms, or chemical targets that cause rancidity in oils. Often these include an organoleptic compound which could change how a product looks, or if it has an odor. It’s important to remember that often the souring of the product due to lactic acid, gas bubbles or off odors will present themselves before microbial counts become obvious.

Shelf life testing is conducted at predetermined intervals, and depending on need, we can stagger these intervals, for instance, we can do more frequent testing during the anticipated end of shelf life. The final shelf life is defined by the last acceptable result.

Antimicrobial effectiveness is another example of special projects, and these involve products that already have an antimicrobial ingredient. In these situations, we inoculate target microorganism into the product and use assay to determine log reduction, or prevention of outgrowth. Antimicrobial effectiveness studies often include aspects of shelf life studies, where product is typically held at a given time-temp combination. These studies may use specific references such as using USP <51>, or reference could include specific microorganisms, and criteria to determine effectiveness (such as log reduction).

Another example is determination of if a product requires refrigeration. For this, we first start with the food product itself, which has a specific combination of pH and water activity to prevent growth of groups of pathogens. Once we have this information, we don’t have to look at broad range of organisms, but can look at specific organisms. The remaining potential threats become challenge organisms for the study. We store the product at room temperature and test for these challenge organisms.

For more information on Special Projects, contact Eurofins US or email Bill Centrella at WilliamCentrella@EurofinsUS.com

Ask the Experts – Automation Pathogen Detection

An ideal pathogen detection solution should provide increased confidence in results, high reproducibility and robustness to routine testing labs, fit seamlessly in laboratory workflow without disrupting it, and work well for medium-to high-throughput testing laboratories. This Q&A provides some insights.

Q: How can an automation system help safeguard against false negative pathogen results?

Pathogen testing can typically be broken up into three categories:

  1. Raw material testing;
  2. Finished product testing; and
  3. Environmental monitoring.

Regardless of the type of testing that is done, it is clear that pathogen detection is an important component of any hazard analysis and risk-based preventative control program. Verification of results is crucial, particularly negative results. When performing pathogen testing with a real-time PCR based assay, the presence of an internal amplification control is critical. When present for each individual sample, the internal control monitors for inhibition, which can be common with matrices such as spices and chocolate. When a negative result is obtained, it is important to know if that sample is truly negative because the pathogen of interest is not present or if the reaction was inhibited.

Another potential for false negative results can come from technician error. If a sample is not actually added to the reaction block, tube or strip for testing, the result will be negative. Therein lies the power of an automation system. The iQ-Check Prep automation system employs a liquid level sensing volume verification step at the beginning of the run. Utilizing monitored air displacement technology and conductive pipette tips, users are alerted if a sample was missed in the setup. The user then has the option to add the sample or skip it and continue the run. If the sample is not added, the result is flagged as invalid. Combining the internal control of iQ-Check real-time PCR detection kits with the verification of the iQ-Check Prep automation system, users can be confident in their results and safeguard against false negatives.

Q: How can an automation system be incorporated into a laboratory without disrupting existing workflow?

Incorporating an automation system into a laboratory can greatly increase efficiency, traceability and throughput…if it is the right solution for the lab. Many factors need to be taken into consideration, for example batch processing. Examining time intervals at which samples finish incubation can determine how batch processing fits into the lab workflow. Technician responsibilities also play a part. Does the system require monitoring and continuous feeding of samples or is it a walk away system that frees technicians up to perform other lab duties? Another important consideration is maintenance. The scheduled upkeep of the system needs to be evaluated not only for the amount of time required but for the cost associated with the maintenance.

The iQ-Check Prep system was designed with efficiency in mind. Samples are processed in batches (plates of 94 samples at a time) for a throughout of >500 samples per instrument per eight hour shift. The system is a true walk away system that does not require constant monitoring or continuous feeding. The maintenance is self-contained and completed by the instrument in 5 minutes. These are just a few questions to ask when considering an automation system for the laboratory. The chosen system should fit effortlessly into the laboratory workflow and increase throughput and efficiency without causing major disruptions.

For more information, visit Bio-rad.com

John A. Wadie, U.S. Marketing Development Manager, 3M

Interview: 30 Years of Petrifilm Technology

By Sangita Viswanathan
No Comments
John A. Wadie, U.S. Marketing Development Manager, 3M

3M Food Safety celebrated a milestone this past summer – the 30th anniversary of its PetrifilmTM Plates – currently the worldwide standard for fast, simple, easy-to-interpret indicator testing.

First introduced in 1984, the 3M Petrifilm Plate technology has long been the industry standard for efficient and reliable colony interpretation and enumeration for the F&B industry. In a chat with Food Safety Tech, John A. Wadie, U.S. Marketing Development Manager for 3M Food Safety Department, talked about the adoption of Petrifilm continuing to grow worldwide, which spoke to the product’s value and utility to the industry. We present below excerpts from a Q&A.

FST: How has the food safety environment changed in the last 30 years?

Wadie: The food industry has become increasingly global, with great awareness among consumers about food safety issues. The combination of these trends, combined with constant information dissemination on a variety of food safety issues, has placed enormous pressure on food companies to test more, do it faster and do it more efficiently. From a regulatory stand point also, there is much more pressure on food companies to proactively maintain and manage stringent food safety procedures, and testing plays a big role in managing this. The biggest change has occurred with the speed of testing. Alongside even faster testing, is the demand for accurate and consistent testing and results.  

FST: What attributes of Petrifilm Plates have made it so popular over the last 30 years?

Wadie: With more than 2 billion units sold and counting, 3M Petrifilm Plates are the world’s leading food indicator testing technology. They are currently in used by all kinds of food processors, universities, governments and third-party contract labs in no fewer than 65 countries.

3M-Petrifilm-July-2014The standout feature of the product, and probably the primary reason for its longevity, is its simplicity, due to the fact there is no need for customers to prepare, purchase or store agar dishes. The technology has also received numerous country-specific, as well as global, validations from multiple, rigorous sources. With Petrifilm Plates, you also ensure the consistency and accuracy of test results from technician to technician, and between plant locations, and these are very important attributes in the current multi-location setting of food companies.

FST: Against the backdrop of FSMA, how is food safety testing set to change in the near future?

Wadie: With new regulations, there’s even greater focus on food safety testing, and getting fast, consistent and accurate results. The regulations, and the standards benchmarked under GFSI, are also laying emphasis on how the testing is done, where it’s done, and who is doing it.

The next 30 years will continue to bring faster and more accurate methods of testing as well as improvements to the preparation process. With greater innovation and rapid detection technologies, it may soon be possible to do inline testing – to identify pathogens and bacteria within production lines as opposed to testing being a separate step.