Tag Archives: Testing

Susanne Kuehne, Decernis
Food Fraud Quick Bites

Extra Fraudulent Olive Oil

By Susanne Kuehne
No Comments
Susanne Kuehne, Decernis
Olive oil fraud
Find records of fraud such as those discussed in this column and more in the Food Fraud Database. Image credit: Susanne Kuehne

Increased demand worldwide, supply that cannot keep up, and a product that is easy to fake makes an attractive setup for fraudsters to jump on the lucrative business of extra virgin olive oil (EVOO). Olive oil fraud is as old as olive oil itself, and it still flies under the radar because government agencies set priorities on what they consider more dangerous food fraud issues. EVOO is very simple to fake, and without laboratory tests, fraudulent oils often remain undetected. Fraudsters are not caught very often, and usually the existing laws do not severely punish such fraud.

Resource

  1. Sommers, M. (November 19, 2020). “The real reason your olive oil is probably fake”. Mashed.
Maria Fontanazza, Food Safety Tech
From the Editor’s Desk

Top 10 from the 2020 Food Safety Consortium Virtual Conference Series

By Maria Fontanazza
No Comments
Maria Fontanazza, Food Safety Tech

2020 has taken a lot away from us, but it has also taught us the importance of being able to quickly adapt (can you say…“pivot”?) to rapidly changing, dire circumstances. For Food Safety Tech, that meant shifting our in-person annual Food Safety Consortium to a virtual event. I really look forward to the Consortium each year, because we are a virtual company, and this is the one time of year that most of the Food Safety Tech and Innovative Publishing Company team are together. When we made the decision to move the event online, we really wanted to be considerate of our attendees, who more than likely were quickly developing webinar and Zoom fatigue. So we created a series of 14 Episodes that spanned from September until last week. I am not going to single out one episode or speaker/session in particular, because I think that all of our speakers and sponsors brought a tremendous amount of education to the food safety community. Thank you.

With that, the following are my top 10 takeaways from the 2020 Food Safety Consortium Virtual Conference Series—and this simply scratches the surface. Feel free to leave a comment on what you learned from our speakers and the discussions this fall.

  1. COVID-19 has served as the springboard for digital transformation, more of which we have seen in the past nine months than in the last several years or even decade. Tech advances are increasing efficiencies, adding the ability to be more predictive, giving more visibility and traceability in the supply chain and offering increased accessibility. These include: IoT; Advanced analytics; Artificial intelligence (FDA has been piloting AI technology); Graph technology used in supply chain visibility; blockchain; mixed reality; and remote monitoring.
  2. There are new responsibilities that come with being a part of America’s critical infrastructure and protecting essential frontline workers.
    • Companies must have a strong relationship (or work to build one) with local health departments and authorities
    • Name a COVID Czar at your company: This is a designated person, located both within a production facility as well as at the corporate location, who manages the bulk of the requirements and precautions that companies should be undertaking to address the pandemic.
  3. Every company should have an emergency risk management plan that centers around good communication.
  4. The COVID-19 pandemic is a reminder to us that the threat for viruses is always lurking beneath the surface. There is still work to be done on the food labs side regarding more rapid assays, leveling the playing field regarding conducting viral testing, and technology that enables labs to get safe, effective and consistent results.
  5. Lessons in sanitation: Investment in sanitation is critical, there are no shortcuts, and empower your sanitation employees, give them the tools they need to effectively do their jobs.
  6. The FDA’s FSMA Proposed Traceability rule is expected to be a “game changer”. It will lay the foundation for meaningful harmonization. FDA Deputy Commissioner for Food Policy and Response Frank Yiannas said the pandemic really put a spotlight on the fact that the U.S. food industry needs better tracking and tracing.
  7. Know your suppliers, know your suppliers, know your suppliers!
  8. Biofilms are ubiquitous, and the process of detecting and eliminating Listeria in your facility is a marathon with no finish line.
  9. Food Safety Culture is a profit center, not an overhead department.
  10. “If I’m not well, I can’t do well.” Making sure your needs are met personally and professionally plays an important role in being a better contributor to your company’s success.

As part of a special offering, we are making four episodes of the 2020 Food Safety Consortium Virtual Conference Series available on demand for free. Head to our Events & Webinars page to register to view the sessions on or after January 2021.

Tyson Foods

Tyson Foods Names First Chief Medical Officer

By Food Safety Tech Staff
No Comments
Tyson Foods

Yesterday Tyson Foods, Inc. announced that it is appointing Claudia Coplein, M.D. to the newly created position of chief medical officer at the company. Effective January 4, this role has been established to help the company promote a “culture of health, safety and wellness at Tyson”. Coplein will supervise the launch of Marathon Health clinics, which will be piloted at seven of Tyson’s facilities (in Texas, Arkansas, Iowa, Kansas, Nebraska, North Carolina and Tennessee) and are intended for both team members as well as their families early next year. The clinics will provide healthcare at no cost in most instances.

Tyson Foods has invested $540 million this year to establish protective measures such as walk-through temperature scanners, workstation barriers and testing services. The company has also hired 200 nurses and administrative staff to add to its occupational health staff, which now totals nearly 600 employees.

Susanne Kuehne, Decernis
Food Fraud Quick Bites

Things Do Not Get Better With Sage

By Susanne Kuehne
No Comments
Susanne Kuehne, Decernis
Sage, food fraud
Find records of fraud such as those discussed in this column and more in the Food Fraud Database. Image credit: Susanne Kuehne

Herbs remain a target for fraudsters. The latest investigation of sage samples by the Institute of Global Food Security (IGFS) at Queen’s University Belfast used a combination of spectroscopic and chemometric methods to check whether sage contained 100% of the actual herb. One quarter of samples from the UK included unapproved (fortunately, no hazardous) bulk material, such as tree leaves, some in significant concentrations of more than half of the product.

Resource

  1. Sage News”. (November 9, 2020). The Hippocratic Post.

 

Tanimura & Antle romaine lettuce

Romaine Lettuce Recall Due to Possible E. Coli Contamination

By Food Safety Tech Staff
No Comments
Tanimura & Antle romaine lettuce
Tanimura & Antle romaine lettuce
Tanimura & Antle issued a voluntary recall of single-head packaged romaine lettuce.

Tanimura & Antle, Inc. is voluntarily recalling its packaged single head romaine lettuce, out of an abundance of caution, due to possible E. Coli 0157:H7 contamination. The product has a packaged date of 10/15/2020 or 10/16/2020, and the UPC number 0-27918-20314-9.

Although no illnesses have been reported, the recall is based on the test result of a random sample taken and analyzed by the Michigan Department of Agriculture and Rural Development. The company distributed 3,396 cartons to 20 states. Retailers and distributors can identify the affected products using the Product Traceability Initiative stickers (571280289SRS1 and 571280290SRS1) that are attached to the exterior of the case.

Susanne Kuehne, Decernis
Food Fraud Quick Bites

Seed Of Thistle May Not Always Produce Thistle

By Susanne Kuehne
No Comments
Susanne Kuehne, Decernis
Milk thistle
Find records of fraud such as those discussed in this column and more in the Food Fraud Database. Image credit: Susanne Kuehne

Silymarin, a complex mixture of flavonolignans, is the main pharmacologically active ingredient of milk thistle, usually used in an extracted form. Milk thistle is often used to treat liver problems, and sales of supplements containing silymarin remain strong. In an estimated 30–50% of milk thistle products, the label claims of active ingredients do not hold up in the actual product, when analyzed with methods such as HPLC-UV. In some investigated samples, the active ingredient content did not even reach the minimum standard. This does not pose a direct threat to consumers’ health, however, the expected therapeutical benefits are not given in products with low content of silymarin.

Resource

  1. McCutcheon, A. (October 16, 2020) “Botanical Adulterants Prevention Bulletin: Adulteration of Milk Thistle (Silybum marianum)”. Botanical Adulterants Prevention Program. American Botanical Council.
Arun Apte, CloudLIMS
In the Food Lab

Is Your Food Testing Lab Prepping for an ISO/IEC 17025 Audit?

By Arun Apte
No Comments
Arun Apte, CloudLIMS

With the increasing globalization of the food industry, ensuring that products reaching consumers are safe has never been more important. Local, state and federal regulatory agencies are increasing their emphasis on the need for food and beverage laboratories to be accredited to ISO/IEC 17025 compliance. This complicated process can be simplified and streamlined through the adoption of LIMS, making accreditation an achievable goal for all food and beverage laboratories.

With a global marketplace and complex supply chain, the food industry continues to face increasing risks for both unintentional and intentional food contamination or adulteration.1 To mitigate the risk of contaminated products reaching consumers, the International Organization for Standardization (ISO), using a consensus-based approval process, developed the first global laboratory standard in 1999 (ISO/IEC 17025:1999). Since publication, the standard has been updated twice, once in 2005 and most recently in 2017, and provides general requirements for the competence of testing and calibration laboratories.2

In the recent revision, four key updates were identified:

  1. A revision to the scope to include testing, calibration and sampling associated with subsequent calibration and testing performed by a laboratory.3
  2. An emphasis on the results of a process instead of focusing on prescriptive procedures and policies.4
  3. The introduction of the concept of a risk-based approach used in production quality management systems.2
  4. A stronger focus on information technologies/management systems, specifically Laboratory Information Management System (LIMS).4

As modern-day laboratories reduce their reliance on hard copy documents and transition to electronic records, additional emphasis and guidance for ISO 17025 accreditation in food testing labs using LIMS was greatly needed. Food testing laboratories have increased reliance on LIMS to successfully meet the requirements of accreditation. Food and beverage LIMS has evolved to increase a laboratory’s ability to meet all aspects of ISO 17025.

ISO 17025 requirements
Figure 1. A schematic representation of some of the requirements of ISO/IEC 17025:2017 compliance. (Figure courtesy CloudLIMS)

Traceability

Chain of Custody
A key element for ISO 17025 accredited laboratories is the traceability of samples from accession to disposal.5 Sometimes referred to as chain of custody, properly documented traceability allows a laboratory to tell the story of each sample from the time it arrives until the time it is disposed of.

LIMS software allows for seamless tracking of samples by employing unique sample accession numbers through barcoding processes. At each step of sample analysis, a laboratory technician updates data in a LIMS by scanning the sample barcode, establishing time and date signatures for the analysis. During an ISO 17025 audit, this information can be quickly obtained for review by the auditor.

Procurement and Laboratory Supplies
ISO 17025 requires the traceability of all supplies or inventory items from purchase to usage.6 This includes using approved vendors, documentation of receipt, traceability of supply usage to an associated sample, and for certain products, preparation of supply to working conditions within the laboratory. Supply traceability impacts multiple departments and coordinating this process can be overwhelming. A LIMS for food testing labs helps manage laboratory inventory, track usage of inventory items, and automatically alerts laboratory managers to restock inventory once the quantity falls below a threshold level.

A food LIMS can ensure that materials are ordered from approved vendors only, flagging items purchased outside this group. As supplies are inventoried into LIMS, the barcoding process can ensure accurate storage. A LIMS can track the supply through its usage and associate it with specific analytical tests for which inventory items are utilized. As products begin to expire, a LIMS can notify technicians to discard the obsolete products.

One unique advantage of a fully integrated LIMS software is the preparation and traceability of working laboratory standards. A software solution for food labs can assist a technician in preparing standards by determining the concentration of solvents needed based on the input weight from a balance. Once prepared, LIMS prints out a label with barcodes and begins the supply traceability process as previously discussed.

Quality Assurance of Test and Calibration Data

This section of ISO 17025 pertains to the validity of a laboratory’s quality system including demonstrating that appropriate tests were performed, testing was conducted on properly maintained and calibrated equipment by qualified personnel, and with appropriate quality control checks.

Laboratory Personnel Competency
Laboratory personnel are assigned to a specific scope of work based upon qualifications (education, training and experience) and with clearly defined duties.7 This process adds another layer to the validity of data generated during analysis by ensuring only appropriate personnel are performing the testing. However, training within a laboratory can be one of the most difficult components of the accreditation process to capture due to the rapid nature in which laboratories operate.

With a food LIMS, management can ensure employees meet requirements (qualifications, competency) as specified in job descriptions, have up-to-date training records (both onboarding and ongoing), and verify that only qualified, trained individuals are performing certain tests.

Calibration and Maintenance of Equipment
Within the scope of ISO 17025, food testing laboratories must ensure that data obtained from analytical instruments is reliable and valid.5 Facilities must maintain that instruments are in correct operating condition and that calibration data (whether performed daily, weekly, or monthly) is valid. As with laboratory personnel requirements, this element to the standard adds an additional layer of credibility that sample data is precise, accurate, and valid.

A fully integrated software solution for food labs sends a notification when instrument calibration is out of specification or expired and can keep track of both routine internal and external maintenance on instruments, ensuring that instruments are calibrated and maintained regularly. Auditors often ask for instrument maintenance and calibration records upon the initiation of an audit, and LIMS can swiftly provide this information with minimal effort.

Figure 2. A preconfigured food LIMS to manage instrument calibration and maintenance data. (Figure courtesy of CloudLIMS)

Measurement of Uncertainty (UM)
Accredited food testing laboratories must measure and report the uncertainty associated with each test result.8 This is accomplished by using certified reference materials (CRM), or known spiked blanks. UM data is trended using control charts, which can be prepared using labor-intensive manual input or performed automatically using LIMS software. A fully integrated food LIMS can populate control data from the instrument into the control chart and determine if sample data analyzed in that batch can be approved for release.

Valid Test Methods and Results
Accurate test and calibration results can only be obtained with methods that are validated for the intended use.5 Accredited food laboratories should use test methods that are current and contain embedded quality control standards.

A LIMS for food testing labs can ensure correct method selection by technicians by comparing data from the sample accession input with the test method selected for analysis. Specific product identifiers can indicate if methods have been validated. As testing is performed, a LIMS can track time signatures to ensure protocols are properly performed. At the end of the analysis, results of the quality control samples are linked to the test samples to ensure only valid results are available for clients. Instilling checks at each step of the process allows a LIMS to auto-generate Certificates of Analysis (CoA) knowing that the testing was performed accurately.

Data Integrity
The foundation of a laboratory’s reputation is based on its ability to provide reliable and accurate data. ISO 17025:2017 includes specific references to data protection and integrity.10 Laboratories often claim within their quality manuals that they ensure the integrity of their data but provide limited details on how it is accomplished making this a high priority review for auditors. Data integrity is easily captured in laboratories that have fully integrated their instrumentation into LIMS software. Through the integration process, data is automatically populated from analytical instruments into a LIMS. This eliminates unintentional transcription errors or potential intentional data manipulation. A LIMS for food testing labs restricts access to changing or modifying data, allowing only those with high-level access this ability. To control data manipulation even further, changes to data auto-populated in LIMS by integrated instrumentation are tracked with date, time, and user signatures. This allows an auditor to review any changes made to data within LIMS and determine if appropriate documentation was included on why the change was made.

Sampling
ISO 17025:2017 requires all food testing laboratories to have a documented sampling plan for the preparation of test portions prior to analysis. Within the plan, the laboratory must determine if factors are addressed that will ensure the validity of the testing, ensure that the sampling plan is available to the laboratory (or the site where sampling is performed), and identify any preparation or pre-treatment of samples prior to analysis. This can include storage, homogenization (grinding/blending) or chemical treatments.9

As sample information is entered into LIMS, the software can specify the correct sampling method to be performed, indicate appropriate sample storage conditions, restrict the testing to approved personnel and provide electronic signatures for each step.

Monitoring and Maintenance of the Quality System

Organization within a laboratory’s quality system is a key indicator to assessors during the audit process that the facility is prepared to handle the rigors that come with accreditation.10 Assessors are keenly aware of the benefits that a food LIMS provides to operators as a single, well-organized source for quality and technical documents.

Document Control
An ISO 17025 accredited laboratory must demonstrate document control throughout its facility.6 Only approved documents are available for use in the testing facility, and the access to these documents is restricted through quality control. This reduces the risk of document access or modification by unauthorized personnel.

LIMS software efficiently facilitates this process in several ways. A food LIMS can restrict access to controlled documents (both electronic and paper) and require electronic signatures each time approved personnel access, modify or print them. This digital signature provides a chain of custody to the document, ensuring that only approved controlled documents are used during analyses and that these documents are not modified.

Software, LIMS
Figure 3. A software solution for food labs helps manage documents, track their revision history, and ensure document control. (Figure courtesy of CloudLIMS)

Corrective Actions/Non-Conforming Work
A fundamental requirement for quality systems is the documentation of non-conforming work, and subsequent corrective action plans established to reduce their future occurrence.5

A software solution for food labs can automatically maintain electronic records of deviations in testing, flagging them for review by quality departments or management. After a corrective action plan has been established, LIMS software can monitor the effectiveness of the corrective action by identifying similar non-conforming work items.

Conclusion

Food and beverage testing laboratories are increasingly becoming accredited to ISO 17025. With recent changes to ISO 17025, the importance of LIMS for the food and beverage industry has only amplified. A software solution for food labs can integrate all parts of the accreditation process from personnel qualification, equipment calibration and maintenance, to testing and methodologies.11 Fully automated LIMS increases laboratory efficiency, productivity, and is an indispensable tool for achieving and maintaining ISO 17025 accreditation.

References

  1. Spink, J. (2014). Safety of Food and Beverages: Risks of Food Adulteration. Encyclopedia of Food Safety (413-416). Academic Press.
  2. International Organization for Standardization (October 2017). ISO/IEC 17025 General requirements for the competence of testing and calibration laboratories. Retrieved from: https://www.iso.org/files/live/sites/isoorg/files/store/en/PUB100424.pdf
  3. 17025 Store (2018). Transitioning from ISO 17025:2005 to ISO/IEC 17024:2017. Standards Store.
  4. Perry Johnson Laboratory Accreditation (2019). An Overview of Changes Between 17025:2005 and 17025:2017. ISO/IEC 17025:2017 Transition. https://www.pjlabs.com/downloads/17025-Transition-Book.pdf
  5. Analytical Laboratory Accreditation Criteria Committee. (2018). AOAC INTERNATIONAL Guidelines for Laboratories Performing Microbiological and Chemical Analyses of Food, Dietary Supplements, and Pharmaceuticals, An Aid to Interpretation of ISO/IEC 17025. Oxford, England: Oxford University Press.
  6. Cokakli, M. (September 4, 2020). Transitioning to ISO/IEC 17025:2017. New Food Magazine.
  7. ISO/IEC 17025:2017. General requirements for the competence of testing and calibration laboratories.
  8. Bell, S. (1999). A Beginner’s Guide to Uncertainty of Measurement. Measurement Good Practice Guide. 11 (2).
  9. 17025Store (2018). Clause 7: Process requirements. Standards Store.
  10. Dell’Aringa, J. (March 27, 2017). Best Practices for ISO 17025 Accreditation: Preparing for a Food Laboratory Audit (Part I). Food Safety Tech.
  11. Apte, A. (2020). Preparing for an ISO 17025 Audit: What to Expect from a LIMS?
Susanne Kuehne, Decernis
Food Fraud Quick Bites

Listen To Your Elder(berries)

By Susanne Kuehne
No Comments
Susanne Kuehne, Decernis

As a tasty source of Vitamin C, B6, antioxidants, iron and more, elderberries have been a growing part of the latest health, immune boosting and wellness trends. Currently, the demand exceeds the supply for elderberries. For the past four to five years, this growth in popularity has been inviting adulteration of elderberry with other dark berries such as blueberries, as well as dyes, black rice and other materials. According to the Botanical Adulterants Prevention Program, such fraud can be detected by a variety of chromatographic methods.

Food fraud, elderberry
Find records of fraud such as those discussed in this column and more in the Food Fraud Database. Image credit: Susanne Kuehne.

Resource

  1. Schultz, H. (September 23, 2020) “Nature’s Way finds more evidence of widespread elderberry adulteration”. Nutra Ingredients-USA.
Susanne Kuehne, Decernis
Food Fraud Quick Bites

To Bee Or Not To Bee

By Susanne Kuehne
No Comments
Susanne Kuehne, Decernis
Bee, food fraud, honey
Find records of fraud such as those discussed in this column and more in the Food Fraud Database. Image credit: Susanne Kuehne.

Fake honey is an enormous economical burden on beekeepers and consumers around the world. Adulteration methods are becoming more and more sophisticated. Besides the old-fashioned scams of real honey getting diluted or replaced by syrup, new tricks show up, for example pollen getting blended into syrup, chemical alteration of syrup to confuse tests, fake honey traveling through a number of countries to mask its country of origin, or a combination of these methods. Since the adulterated honey does not pose a risk to consumer’s health, government enforcement to detect and punish honey adulteration has not been very strong. So far, authenticity tests are mostly left to the private sector and the honey industry.

Resource

  1. Copeland, C. (August 26, 2020). “Honey is one of the most faked foods in the world, and the US government isn’t doing much to fix it“. Business Insider.
Food Safety Consortium

2020 FSC Episode 5 Preview: Food Labs

By Food Safety Tech Staff
No Comments
Food Safety Consortium

This week’s episode of the 2020 Food Safety Consortium Virtual Conference Series promises to be an insightful discussion on topics critical to food laboratories. The following are some highlights:

  • Developing Your Technology During a Pandemic/COVID Testing Food, with Douglas Marshall, Ph.D., Eurofins
  • Viral Landscape of Testing, with Vik Dutta, bioMérieux; Prasant Prusty, Pathogenia, Inc.; Efi Papafragkou, Ph.D., FDA; and Erin Crowley, Q Laboratories
  • The FSMA Proposed Rule on Laboratory Accreditation and the Impacts on Labs and Lab Data Users, with Douglas Leonard, ANAB
  • Tech Talk from PathogenDX

The event begins at 12 pm ET. Haven’t registered? Follow this link to the 2020 Food Safety Consortium Virtual Conference Series, which provides access to 14 episodes of critical industry insights from leading subject matter experts! We look forward to your joining us virtually.