Christine Charlotte Akselsen, Kezzler
FST Soapbox

Connecting the Dots for Food Safety at GFSI 2020

By Christine Charlotte Akselsen
No Comments
Christine Charlotte Akselsen, Kezzler

Representatives at this year’s GFSI conference hailed from 53 countries and spanned the food industry, academia, the public sector and beyond. They came together in Seattle, a city that has long stood at the cutting edge of technological innovation, and as such was a fitting host for this year’s theme: “One Connected World. One Safe Food Supply”.

Speakers at the forefront of their fields shared knowledge and showcased creative methods of delivering connectivity—interpersonal, technology-mediated and otherwise, all geared towards the ultimate goal of helping provide safer food for consumers everywhere.

Meanwhile, there were numerous opportunities to connect with representatives of industry giants such as Costa, Nestle, McDonald’s, Amazon and Starbucks, as well as regulatory agencies, certification & accreditation bodies, NGOs, academia and the media, at the various networking sessions.

Urgent Action Required

As the conference kicked off, it was Peter Freedman, the managing director of The Consumer Goods Forum (CGF), who set out the importance of the task at hand. His message was one of urgency in delivering positive change.

Freedman pointed to recent global events, such as the wildfires in Brazil, as examples of how the world could be at a tipping point. “Action is more urgent than ever”, he told delegates, stating that it is no longer just a matter of responding, but responding urgently. Freedman also pointed to E. coli outbreaks in 2017, 2018 and late 2019 to drive home to industry leaders gathered at the conference that food safety cannot be taken for granted.

The spirit of the event was, as usual, geared towards a collaborative approach. Delegates were asked to leave their commercial interests at the door and work purely towards “a world where all food is safe” for the duration of the event.

“This week is not about us as individuals, it’s about how we come together as a collective of brilliant minds to provide solutions,” GFSI Director Erica Sheward stated. She then invited the audience to stand in recognition of this commitment, and sure enough everyone in the packed auditorium took to their feet demonstrating their commitment to the shared mission.

GFSI’s New Benchmarking Requirements

The GFSI used the conference as a platform to launch its new Benchmarking Requirements Version 2020, which establish a new foundation for food safety. To close the opening session, Sheward joined Mike Robach, Chairman of the GFSI Board, Vice-Chairs Anita Scholte op Reimer and Gillian Kelleher and GFSI Senior Technical Manager Marie-Claude Quentin around a red ‘action button’ to mark their publication.

The requirements are geared towards enabling a common understanding and mutual trust in the supply chain that facilitates trade, improves efficiency and lends nameplate authority to operations certified to a GFSI-recognized program. They incorporate stakeholder input from public consultations and are regularly revised to reflect best practices and evolving needs in the industry.

GFSI positioned the new version as more than just an update, but a complete rethink “representing the beginning of a new generation of recognition”. The two primary objectives of Version 2020, are to achieve transparency and objectivity, with new and strengthened elements that include two new scopes focused on hygienic design, elements of food safety culture and reinforced impartiality of the auditing process and the monitoring of certification bodies.

Shark Tank Sessions

This year’s GFSI program also included a new format to help showcase how the latest technology is being used to further food safety. Leaders in innovation took part in a number of Shark Tank-style breakout sessions to pitch their technology solutions to the sharks and the attendees.

A total of nine cutting-edge companies took to the stage to pitch their concepts to a panel of experts—‘sharks’—who are well-placed to judge their value for the industry. The nine competitors were selected from a large pool of applicants based on their innovative spirit, disruptive potential and feasibility.

Each presenter had 12-minutes to outline the context in which their solution is utilized, the technology supporting it and how it is implemented. Following the pitches, each presenter came under the scrutiny of the sharks who were able to ask clarifying questions.

Kezzler was among the companies to take to the stage with CEO Christine Akselsen sharing insights from work with FrieslandCampina’s infant formula brand, FRISO. Referencing the grass-to-glass case study, she demonstrated how Kezzler’s technology works in practice, tracking information from farms in The Netherlands to consumers in China. Following the sessions an audience vote determined the winner of the competition, which was announced during the final plenary of the conference. Kezzler was also crowned as the first-ever GFSI Shark Tank champion.

Michael Bartholomeusz, TruTag
In the Food Lab

Intelligent Imaging and the Future of Food Safety

By Michael Bartholomeusz, Ph.D.
1 Comment
Michael Bartholomeusz, TruTag

Traditional approaches to food safety no longer make the grade. It seems that stories of contaminated produce or foodborne illnesses dominate the headlines increasingly often. Some of the current safeguards set in place to protect consumers and ensure that companies are providing the freshest, safest food possible continue to fail across the world. Poorly regulated supply chains and food quality assurance breakdowns often sicken customers and result in recalls or lawsuits that cost money and damage reputations. The question is: What can be done to prevent these types of problems from occurring?

While outdated machinery and human vigilance continue to be the go-to solutions for these problems, cutting-edge intelligent imaging technology promises to eliminate the issues caused by old-fashioned processes that jeopardize consumer safety. This next generation of imaging will increase safety and quality by quickly and accurately detecting problems with food throughout the supply chain.

How Intelligent Imaging Works

In broad terms, intelligent imaging is hyperspectral imaging that uses cutting-edge hardware and software to help users establish better quality assurance markers. The hardware captures the image, and the software processes it to provide actionable data for users by combining the power of conventional spectroscopy with digital imaging.

Conventional machine vision systems generally lack the ability to effectively capture and relay details and nuances to users. Conversely, intelligent imaging technology utilizes superior capabilities in two major areas: Spectral and spatial resolution. Essentially, intelligent imaging systems employ a level of detail far beyond current industry-standard machinery. For example, an RGB camera can see only three colors: Red, green and blue. Hyperspectral imaging can detect between 300 and 600 real colors—that’s 100–200 times more colors than detected by standard RGB cameras.

Intelligent imaging can also be extended into the ultraviolet or infrared spectrum, providing additional details of the chemical and structural composition of food not observable in the visible spectrum. Hyperspectral imaging cameras do this by generating “data cubes.” These are pixels collected within an image that show subtle reflected color differences not observable by humans or conventional cameras. Once generated, these data cubes are classified, labeled and optimized using machine learning to better process information in the future.

Beyond spectral and spatial data, other rudimentary quality assurance systems pose their own distinct limitations. X-rays can be prohibitively expensive and are only focused on catching foreign objects. They are also difficult to calibrate and maintain. Metal detectors are more affordable, but generally only catch metals with strong magnetic fields like iron. Metals including copper and aluminum can slip through, as well as non-metal objects like plastics, wood and feces.

Finally, current quality assurance systems have a weakness that can change day-to-day: Human subjectivity. The people put in charge of monitoring in-line quality and food safety are indeed doing their best. However, the naked eye and human brain can be notoriously inconsistent. Perhaps a tired person at the end of a long shift misses a contaminant, or those working two separate shifts judge quality in slightly different ways, leading to divergent standards unbeknownst to both the food processor and the public.

Hyperspectral imaging can immediately provide tangible benefits for users, especially within the following quality assurance categories in the food supply chain:

Pathogen Detection

Pathogen detection is perhaps the biggest concern for both consumers and the food industry overall. Identifying and eliminating Salmonella, Listeria, and E.coli throughout the supply chain is a necessity. Obviously, failure to detect pathogens seriously compromises consumer safety. It also gravely damages the reputations of food brands while leading to recalls and lawsuits.

Current pathogen detection processes, including polymerase chain reaction (PCR), immunoassays and plating, involve complicated and costly sample preparation techniques that can take days to complete and create bottlenecks in the supply chain. These delays adversely impact operating cycles and increase inventory management costs. This is particularly significant for products with a short shelf life. Intelligent imaging technology provides a quick and accurate alternative, saving time and money while keeping customers healthy.

Characterizing Food Freshness

Consumers expect freshness, quality and consistency in their foods. As supply chains lengthen and become more complicated around the world, food spoilage has more opportunity to occur at any point throughout the production process, manifesting in reduced nutrient content and an overall loss of food freshness. Tainted meat products may also sicken consumers. All of these factors significantly affect market prices.

Sensory evaluation, chromatography and spectroscopy have all been used to assess food freshness. However, many spatial and spectral anomalies are missed by conventional tristimulus filter-based systems and each of these approaches has severe limitations from a reliability, cost or speed perspective. Additionally, none is capable of providing an economical inline measurement of freshness, and financial pressure to reduce costs can result in cut corners when these systems are in place. By harnessing meticulous data and providing real-time analysis, hyperspectral imaging mitigates or erases the above limiting factors by simultaneously evaluating color, moisture (dehydration) levels, fat content and protein levels, providing a reliable standardization of these measures.

Foreign Object Detection

The presence of plastics, metals, stones, allergens, glass, rubber, fecal matter, rodents, insect infestation and other foreign objects is a big quality assurance challenge for food processors. Failure to identify foreign objects can lead to major added costs including recalls, litigation and brand damage. As detailed above, automated options like X-rays and metal detectors can only identify certain foreign objects, leaving the rest to pass through untouched. Using superior spectral and spatial recognition capabilities, intelligent imaging technology can catch these objects and alert the appropriate employees or kickstart automated processes to fix the issue.

Mechanical Damage

Though it may not be put on the same level as pathogen detection, food freshness and foreign object detection, consumers put a premium on food uniformity, demanding high levels of consistency in everything from their apples to their zucchini. This can be especially difficult to ensure with agricultural products, where 10–40% of produce undergoes mechanical damage during processing. Increasingly complicated supply chains and progressively more automated production environments make delivering consistent quality more complicated than ever before.

Historically, machine vision systems and spectroscopy have been implemented to assist with damage detection, including bruising and cuts, in sorting facilities. However, these systems lack the spectral differentiation to effectively evaluate food and agricultural products in the stringent manner customers expect. Methods like spot spectroscopy require over-sampling to ensure that any detected aberrations are representative of the whole item. It’s a time-consuming process.

Intelligent imaging uses superior technology and machine learning to identify mechanical damage that’s not visible to humans or conventional machinery. For example, a potato may appear fine on the outside, but have extensive bruising beneath its skin. Hyperspectral imaging can find this bruising and decide whether the potato is too compromised to sell or within the parameters of acceptability.

Intelligent imaging can “see” what humans and older technology simply cannot. With the ability to be deployed at a number of locations within the food supply chain, it’s an adaptable technology with far-reaching applications. From drones measuring crop health in the field to inline or end-of-line positioning in processing facilities, there is the potential to take this beyond factory floors.

In the world of quality assurance, where a misdiagnosis can literally result in death, the additional spectral and spatial information provided by hyperspectral imaging can be utilized by food processors to provide important details regarding chemical and structural composition previously not discernible with rudimentary systems. When companies begin using intelligent imaging, it will yield important insights and add value as the food industry searches for reliable solutions to its most serious challenges. Intelligent imaging removes the subjectivity from food quality assurance, turning it into an objective endeavor.

Susanne Kuehne, Decernis
Food Fraud Quick Bites

Novel Foods, Novel Frauds

By Susanne Kuehne
No Comments
Susanne Kuehne, Decernis
Purple beans, food fraud
Find records of fraud such as those discussed in this column and more in the Food Fraud Database.
Image credit: Susanne Kuehne

The popularity of plant-based protein powders has skyrocketed, and so has fraudulent activity with so-called protein boosting adulterants. Examples are a variety of beans, such as fava beans, as well as wheat, maize, alfalfa and more. Due to the rapid innovation and development of novelty supplements, regulatory standards are in urgent need of overhaul. Correct ingredient investigation in commercial plant-based protein powders is therefore a must and was investigated in this study with three different diagnostic tools.

Resource

  1. Faller, A.C., et. al. (August 20, 2019). “Investigating appropriate molecular and chemical methods for ingredient identity testing of plant-based protein powder dietary supplements”. Scientific Reports.

Learn more about food fraud and testing technologies at the Food Labs/Cannabis Labs Conference | June 2–4, 2020

Benjamin Katchman, PathogenDx
In the Food Lab

Revolutionary Rapid Testing for Listeria Monocytogenes and Salmonella

By Benjamin A. Katchman, Ph.D., Michael E. Hogan, Ph.D., Nathan Libbey, Patrick M. Bird
No Comments
Benjamin Katchman, PathogenDx

The Golden Age of Bacteriology: Discovering the Unknown in a Farm-to-Market Food Supply.

The last quarter of the 19th Century was both horrific and exciting. The world had just emerged from four decades of epidemic in cholera, typhoid fever and other enteric diseases for which no cause was known. Thus, the great scientific minds of Europe sought to find understanding. Robert Koch integrated Pasteur’s Germ Theory in 1861 with the high technology of the day: Mathematical optics and the first industrialized compound microscopes (Siebert, Leiss, 1877), heterocycle chemistry, high-purity solvents (i.e., formaldehyde), availability of engineered glass suitable as microscope slides and precision-molded parts such as tubes and plates in 1877, and industrialized agar production from seaweed in Japan in 1860. The enduring fruit of Koch’s technology integration tour de force is well known: Dye staining of bacteria for sub-micron microscopy, the invention of 13 cm x 1 cm culture tubes and the invention of the “Petri” dish coupled to agar-enriched culture media. Those technologies not only launched “The Golden Age of Bacteriology” but also guided the entire field of analytical microbiology for two lifetimes, becoming bedrock of 20th Century food safety regulation (the Federal Food, Drug and Cosmetic Act in 1938) and well into the 21st century with FSMA.

Learn more about technologies in food safety testing at the Food Labs / Cannabis Labs Conference | June 2–4, 2020 | Register now!Blockchain Microbiology: Managing the Known in an International Food Supply Chain.

If Koch were to reappear in 2020 and were presented with a manual of technical microbiology, he would have little difficulty recognizing the current practice of cell fixation, staining and microscopy, or the SOPs associated with fluid phase enrichment culture and agar plate culture on glass dishes (still named after his lab assistant). The point to be made is that the analytical plate culture technology developed by Koch was game changing then, in the “farm-to-market” supply chain in Koch’s hometown of Berlin. But today, plate culture still takes about 24 to 72 hours for broad class indicator identification and 48 to 96 hours for limited species level identification of common pathogens. In 1880, life was slow and that much time was needed to travel by train from Paris to Berlin. In 2020, that is the time needed to ship food to Berlin from any place on earth. While more rapid tests have been developed such as the ATP assay, they lack the speciation and analytical confidence necessary to provide actionable information to food safety professionals.

It can be argued that leading up to 2020, there has been an significant paradigm shift in the understanding of microbiology (genetics, systems based understanding of microbial function), which can now be coupled to new Third Industrial Age technologies, to make the 2020 international food supply chain safer.

We Are Not in 1880 Anymore: The Time has Come to Move Food Safety Testing into the 21st Century.

Each year, there are more than 48 million illnesses in the United States due to contaminated food.1 These illnesses place a heavy burden on consumers, food manufacturers, healthcare, and other ancillary parties, resulting in more than $75 billion in cost for the United States alone.2 This figure, while seemingly staggering, may increase in future years as reporting continues to increase. For Salmonella related illnesses alone, an estimated 97% of cases go unreported and Listeria monocytogenes is estimated to cause about 1,600 illnesses each year in the United States with more than 1,500 related hospitalizations and 260 related deaths.1,3 As reporting increases, food producers and regulatory bodies will feel an increased need to surveil all aspects of food production, from soil and air, to final product and packaging. The current standards for pathogenic agriculture and environmental testing, culture-based methods, qPCR and ATP assays are not able to meet the rapid, multiplexed and specificity required to meet the current and future demands of the industry.

At the DNA level, single cell level by PCR, high throughput sequencing, and microarrays provide the ability to identify multiple microbes in less than 24 hours with high levels of sensitivity and specificity (see Figure 1). With unique sample prep methods that obviate enrichment, DNA extraction and purification, these technologies will continue to rapidly reduce total test turnaround times into the single digit hours while simultaneously reducing the costs per test within the economics window of the food safety testing world. There are still growing pains as the industry begins to accept these new molecular approaches to microbiology such as advanced training, novel technology and integrated software analysis.

It is easy to envision that the digital data obtained from DNA-based microbial testing could become the next generation gold standard as a “system parameter” to the food supply chain. Imagine for instance that at time of shipping of a container, a data vector would be produced (i.e., time stamp out, location out, invoice, Listeria Speciation and/or Serovar discrimination, Salmonella Speciation and/or Serovar discrimination, refer toFigure 1) where the added microbial data would be treated as another important digital attribute of the load. Though it may seem far-fetched, such early prototyping through the CDC and USDA has already begun at sites in the U.S. trucking industry, based on DNA microarray and sequencing based microbial testing.

Given that “Third Industrial Revolution” technology can now be used to make microbial detection fast, digital, internet enabled and culture free, we argue here that molecular testing of the food chain (DNA or protein based) should, as soon as possible, be developed and validated to replace culture based analysis.

Broad Microbial Detection
Current microbiological diagnostic technology is only able to test for broad species of family identification of different pathogens. New and emerging molecular diagnostic technology offers a highly multiplexed, rapid, sensitive and specific platforms at increasingly affordable prices. Graphic courtesy of PathogenDx.

References.

  1. Scallan, E., Hoekstra, R. M., Angulo, F. J., Tauxe, R. V., Widdowson, M. A., Roy, S. L., … Griffin, P. M. (2011). Foodborne illness acquired in the United States–major pathogens. Emerging infectious diseases, 17(1), 7–15. doi:10.3201/eid1701.p11101
  2. Scharff, Robert. (2012). Economic Burden from Health Losses Due to Foodborne Illness in the United States. Journal of food protection. 75. 123-31. 10.4315/0362-028X.JFP-11-058.
  3. Mead, P. S., Slutsker, L., Dietz, V., McCaig, L. F., Bresee, J. S., Shapiro, C., … Tauxe, R. V. (1999). Food-related illness and death in the United States. Emerging infectious diseases, 5(5), 607–625. doi:10.3201/eid0505.990502
Peter Jardine, Bayer
Bug Bytes

Sanitation and IPM Inspection

By Peter Jardine
No Comments
Peter Jardine, Bayer

Register to attend the complimentary webinar: New Technology’s Impact on Pest Management in a FSMA Regulated World | March 5, 2020 | 12 pm ETMillions of pounds of food are lost every year due to pest activity. A lot of those lost food products could have been prevented through a quality sanitation program. One of the best ways to protect your facility from the potential damage and pathogen spread caused pests like rodents is to maintain a quality sanitation program.

Every sanitation program should take into consideration conditions that are conducive to attracting and supporting unwanted visitors. As rodents are incredibly agile and intelligent creatures, one of the best ways to keep them out of a facility is to give them no reason to be interested in coming in. This means eliminating access to each of their basic needs: Food, water and harborage—in any amount. Remember, they are small, scrappy creatures and only need crumbs and droplets of water to survive. Once you change your perspective from that of a human being to that of a rodent you may be surprised by the bountiful conditions that are at your feet.

Laura Gutierrez Becerra
Women in Food Safety

Raising Up Women in Food Safety: Let’s Do This Together

By Laura Gutierrez Becerra, Melanie Neumann, JD, MS, Melody Ge
No Comments
Laura Gutierrez Becerra

This month we are truly honored to introduce two committee members who are devoted to helping women in the industry, especially young professionals. Melanie Neumann and Laura Gutierrez Becerra are outstanding professionals who believe in the importance of women in leadership roles.

Melanie Neumann, Neumann Risk Services
Melanie Neumann, Neumann Risk Services, LLC

Melanie Neumann, Executive Vice President and General Counsel, Matrix Sciences

Melanie Neumann leverages both a juris doctorate law degree specializing in food laws and regulations and a Master’s degree in food science to assist the food and beverage industry with regulatory, business, brand and public health risk management solutions in today’s ever-changing risk landscape. Neumann launched her career as a food law attorney for Hormel Foods Corporation, and held similar roles at The Schwan Food Company, and the law firm of Fredrikson & Byron, all based in Minnesota where she was born and raised by her mother who was described by Melanie as “the reason I am as successful as I am today.” After her initial career launch, Neumann evolved into food safety and enterprise risk management consulting roles for Pricewaterhouse Coopers and boutique food safety consulting firms before launching her own business, Neumann Risk Services, which was subsequently assumed by Matrix Sciences International, Inc.— food safety and quality experts focusing on microbiological, chemistry, analytical, residue and pesticide laboratory testing, sensory testing, data analytics and food safety risk management advisory services. (Neumann is also a member of Food Safety Tech’s Advisory Board).

Laura Gutierrez Becerra, Food Safety & Quality Assurance Director, Calyxt

Born and raised in Mexico, Laura Gutierrez Becerra completed her undergraduate studies in biological and pharmaceutical chemistry and holds a Master’s degree in food science and technology. Her passion for embracing a safe global food supply chain started in college while participating in a student exchange program where she saw the need to help other countries improve their food safety systems and establish a global food safety culture. Gutierrez Becerra’s experience includes corporate restaurant, retail and manufacturing food sectors where she has established risk-based food safety programs and led management of quality through the product lifecycle while embracing strong partnerships with stakeholders in order achieve a shared preventative accountability.

What prompted the launch of a group that focuses on female professional development in the food safety sector?

Melanie Neumann: Melanie’s commitment to empowering women has a long history, starting with encouraging women to actively participate in local and state politics to volunteering for female running programs that empower girls to realize they can always do more than they think they can. In the food safety arena, Neumann was the first female to serve in nearly every professional role she has held, so she is well aware of the trials—and the joys—of paving the way not only for herself but for other women as well. In founding and running her own successful consulting firm, she understands the courage, commitment, fears and support required to successfully navigate professional advancement in food safety, while still preserving a balance to pursue her passion. She competes in the Ironman long-distance triathlons and is participating in her ninth Ironman triathlon in April 2020.

Laura Gutierrez Becerra
Laura Gutierrez Becerra, Calyxt

Laura Gutierrez Becerra: Raising a multi-cultural and multi-lingual family with her husband, Gutierrez Becerra embraces diversity of thought and inclusion of ideology for the establishment of a global food safety culture. Building the strengths of young women during their educational and career journeys will help build the foundation for a strong and diverse food safety community. Gutierrez Becerra also believes it is important to have male food safety leaders participate in this group to walk the audience through their experiences when bringing women along their own professional career, as well as sharing what they have learned while partnering with women in food safety roles at all leadership levels

How do you see this group positioned in the future?

Neumann: Neumann envisions a female-forward/female-centric group where women in food safety can gain mentoring, networking and volunteer opportunities, and share successes and challenges unique to women in the field. That said, she also sees a role for our male counterparts in food safety to provide insights into successful strategies and tactics for females to consider leveraging. Neumann views our field as one, but comprised of many perspectives, and is dedicated to helping ensure that each voice is heard.

Gutierrez Becerra: Based on the fact that the food industry is continually and rapidly evolving—where product launches are led by consumer trends and behaviors—Gutierrez Becerra sees and believes this social network will support women in connecting and guiding each other while learning from each others careers and challenging experiences regardless of the career level. She also believes this group can be a great venue through which to seek advice and embrace work/life balance while striving for a career path.

We invite you to join the group, For Women in Food Safety or direct message Melody Ge on LinkedIn. We welcome all the support and are constantly looking for mentors. If you are interested in mentoring the young food safety professionals, please reach out to Melody Ge, Jill Hoffman, Jacqueline Southee, Melanie Neumann and Laura Gutierrez Becerra through the group. We can do this together!

Susanne Kuehne, Decernis
Food Fraud Quick Bites

Germany’s Food Warning Website

By Susanne Kuehne
No Comments
Susanne Kuehne, Decernis
Food fraud, Germany
Find records of fraud such as those discussed in this column and more in the Food Fraud Database. Image credit: Susanne Kuehne

Unapproved ingredients and allergens, whether added intentionally or unintentionally, were the third largest reason for recalls in Germany last year, behind microbiological contamination and impurities from foreign matter. The German food warning system by the BVL (Bundesamt fuer Verbraucherschutz und Lebensmittelsicherheit) is accessible by the public and provides detailed information of warnings considering food and beverages. The warnings issued per year are growing steadily, from 100 warnings in 2015 to 161 in 2017 to 198 warnings in 2019.

Resource

  1. WirtschaftsWoche (January 10, 2020) “Um Rueckruf wird gebeten”. Retrieved from WirtschaftsWoche3, 2020. Original source Bundesamt fuer Verbraucherschutz und Lebensmittelsicherheit
Craig Reeds
FST Soapbox

Cybersecurity for Food and Beverage Operational Technology (OT) Environments

By Craig Reeds
No Comments
Craig Reeds

Much of the attention that cybersecurity gets is on the IT or office network side of things, but recently people have begun paying more attention to operational technology (OT) systems that make up the country’s critical infrastructure. When people think of critical infrastructure, they automatically think of oil and gas, power generation, and water. Many people don’t realize that there are actually 16 critical infrastructure industries:

  • Energy
  • Financial
  • Dams
  • Defense
  • Critical Manufacturing
  • Water and Wastewater
  • Food and Agriculture
  • Healthcare
  • Government Facilities
  • Commercial Facilities
  • Transportation
  • Emergency Services
  • Chemical
  • Communications
  • Nuclear
  • Information Technology

One of the easily forgotten, but perhaps most important, is food and beverage manufacturing. A cyber attack on a food and beverage company might not result in the lights going out or clouds of toxic gas, but they could result in explosions, or tainted food. We need to start paying more attention to cybersecurity in the food and beverage industry. What would happen if a hacker got into the control system at a frozen foods distribution facility? They could raise the temperature in the freezers, thaw the food and then refreeze it. This could result in food poisoning for hundreds or thousands of people. Bad actors can do a lot of harm by targeting this sector.

Many companies are pushing to combine their IT and OT departments, something they call IT/OT convergence. This can be done, but you need to first understand that IT and OT have differing goals.

It is important to review the organizational structure. You will typically find that both IT and OT report organizationally to the CEO level. We also find senior management believes IT owns the industrial control system (ICS) networks and security—mainly because IT owns support, maintenance & operational budget for network and security (basically letting OT off the hook).

IT’s primary goals are confidentiality, integrity and availability, the CIA triad. While working toward these objectives IT also tries to make it possible for users to access the network from any location from which they are working, using whatever computing device they have with them. The goal is to make it as easy to work from an airport, hotel room or coffee shop as it is to work in the office itself. Technology is updated and replaced often. Service packs are loaded, new software releases are loaded, and bugs are fixed.

OT’s primary goals are availability, integrity and confidentiality—a complete reversal of the CIA triad. They strive to keep production running, be it an electric utility, an oil rig or a pop-tart factory 24/7/365. OT is all about what works, a “We’ve always done it that way” mentality. OT will always be reluctant to make any change that might bring down the production line. Remember, they are graded on widgets per minute. There must be trust and open communication between IT and OT if things are going to work properly.

When we are talking about OT cybersecurity, we usually use terms like secure or prevent, when we really should be thinking about words like containment. Securing the network and preventing attacks is important, but at some point, an attack will get past your defenses. Then it is a matter of containment: How do we keep the problem from spreading to other networks?

One thing to definitely avoid is the desire by IT to have bi-directional communications between the IT and OT networks—this should never happen. Also, avoid the desire to connect the ICS to the Internet so that you can control the process remotely. There is no reason for the plant manager to be able to go home, have a couple beers and then log on to see if he can make things run better. If the control system is going to be connected to the corporate IT or the Internet, it should only have out-going uni-directional data transmission to allow monitoring of the system.

Building a good OT cybersecurity program, you need to do three things:

  • Get C-Level support and buy-in for the changes to be made.
  • Communicate with stakeholders and vendors.
  • Make decisions as a team, make sure all the stakeholders, IT, OT, engineering are all involved.

After you have set up the structure and started communicating, you need to begin cybersecurity awareness training for the OT staff. This training should be focused on educating plant personnel on what cybersecurity is, both at work and at home, and how to respond or escalate something that seems wrong. They need to be trained what needs to be dealt with immediately and what can wait. Consider doing tabletop exercises where you practice what to do when certain things occur. This can act as a stress test for your incident response plan and help find the holes in your plan and procedures. These tabletop exercises should involve C-suite individuals as well as people from the plant floor, so everyone understand their part in a cyber-attack response.

If these concepts are followed, you will be well on your way to creating a much more cyber-secure production environment.

Susanne Kuehne, Decernis
Food Fraud Quick Bites

What a Waste

By Susanne Kuehne
1 Comment
Susanne Kuehne, Decernis
Schweinerei, food fraud
Find records of fraud such as those discussed in this column and more in the Food Fraud Database. Image credit: Susanne Kuehne

The Netherlands Food and Consumer Product Safety Authority NVWA closed down an animal feed company that generated €4 million revenue selling contaminated feed with forged documents. Several thousand tons of waste, unsuitable to use in animal feed, was found at the facility, and three employees have been arrested.

Resources

  1. Byrne, J. (February 6, 2020). “Arrests in feed fraud cases in the Netherlands”. Feed Navigator.
  2. Also see Inval bij veevoederbedrijf in omgeving van Tilburg.
April Kates, EAS Consulting
Retail Food Safety Forum

Labeling Impact of FDA’s Nutrition Innovation Strategy

By April Kates
No Comments
April Kates, EAS Consulting

On March 29, 2018, FDA announced the Nutrition Innovation Strategy, which signaled their intention to take a fresh look at what can be done to “reduce the burden of chronic disease through improved public nutrition.” The agency wants to facilitate consumers making better food choices to improve their health. At the same time, FDA has acknowledged that in many cases, changes in food processing technology has rendered outdated certain provisions of the regulations once written to both inform and protect the public. Therefore, FDA has developed a plan to move ahead to update its policy toolkit.

This multi-pronged approach includes modernizing food labeling, including food standards, health claims policy, ingredient labeling requirements and continuing implementation of the updated nutrition facts label, menu labeling, and reducing sodium in processed food products.

In particular, in trying to gather information to help determine the best approach to revising food standards of identity, FDA held a public meeting on September 27, 2019. FDA is attempting to provide room in the regulations for industry to be able to use modern and hopefully more healthful manufacturing methods while at the same time retaining the traditional characteristics and nutritional value of standardized food products.

During the public meeting, consumer advocacy groups, food industry trade groups and medical associations expressed many points of view as to what FDA should do to make the more than 250 food standards of identity more applicable to the modern food supply. FDA also took comments on updating food ingredient labeling requirements, including simplifying terms for ingredients such as vitamins. Because each food standard of identity is a regulation, it will be no small effort for the agency to update, remove or add standards of identity as needed. This meeting was a way to get input to help guide their decisions and priority—making for food standards and ingredient labeling revisions.

Obviously, with such a broad-based effort, the revisions and changes will be incremental. But the thing to keep in mind is that it all points to an effort to improve public health through the food supply as well as an effort to impactfully modernize the regulations. What follows is a very brief summary of some of FDA’s recent actions in this regard.

On December 30, 2019, FDA announced the final guidance on Serving Sizes, Dual-Column Labeling, which provided additional information about when dual column labeling for nutrition is required and what exemptions are in place to provide relief for certain products or package sizes.

On December 27, 2019, FDA reopened the comment period on the use of ultrafiltered (UF) milk in certain cheeses. When the proposed rule for UF milk in cheeses originally published in 2005, FDA received many comments. Essentially, ultrafiltration was a means to enhance the speed of cheese production, and the standard of identity cheeses were written before this technology was common and did not permit this type of process. FDA seeks to modernize the cheese standards while keeping intact the nature of these cheeses, and so the agency is eager to learn about what can be done to accommodate the new technology without losing the essence of the standards that consumers have come to expect. Because of the time lapse since the previous comment period, FDA is seeking more information to inform their rulemaking.

On October 25, 2019, FDA released a final rule revising the type size for calorie declarations on front of pack labeling for glass-front vending machines. The 2014 rule establishing calorie labeling for products sold from vending machines had provisions that were difficult for certain products to meet. This new rule recognizes those challenges and was an attempt by the agency to provide a middle ground for the industry to meet the requirements of visible calorie labeling on small packages sold in vending machines.

On August 15, 2019, FDA announced final guidance on converting units of measure for Folate, Niacin, and Vitamins A, D and E on the nutrition and supplement facts labels. The guidance provides help to the industry in meeting the requirements of the revised nutrition facts label.

Regarding updating the “healthy” claim on food products, when this term was originally defined by the agency, saturated fat was the nutrient of focus for these claims. However, since then, there are new focuses on health, such as added sugar and calories. In September 2016, FDA sought to modernize the claim, and provided an interim policy to guide its use.

In May 2019, FDA published a draft guidance to provide enforcement discretion for the use of the term “potassium chloride salt” on ingredient statements. In addition, in April 2019, FDA provided a draft guidance for the calculation of calories from a newer sweetener, Allulose.

As you can see, there are a lot of moving parts to FDA’s effort. What will be the impact on the food industry? Changes will most likely be gradual. Over time, there will be modifications to food standards of identity, and potentially claims, and both of these will cause label revisions. And, typically, there may be enforcement discretion by FDA to allow the industry time to revise their products and /or labeling as needed.

You will see FDA requests for information from the public and the industry on various related topics to the Nutrition Innovation Strategy, and guidance documents will be updated.