Tag Archives: Campylobacter

Campylobacter Enrichment Broth

3M Launches New Molecular Method to Detect Campylobacter

Campylobacter Enrichment Broth

3M Food Safety has launched the 3M Molecular Detection Assay 2 – Campylobacter with 3M Campylobacter Enrichment Broth. Poultry producers now have a complete solution for simultaneous monitoring of poultry for both Salmonella and Campylobacter. It can perform up to 96 tests of multiple types in a 60-minute run.

The Enrichment Broth requires just five steps and eliminates the need for microaerophilic incubation, supplements, blood, organic solvents or autoclaving the broth, only requiring the addition of sterile water.

For more information, visit 3M’s product website.

Martin Easter, Hygiena
In the Food Lab

The New Normal: Pinpointing Unusual Sources of Food Contamination

By Martin Easter, Ph.D.
No Comments
Martin Easter, Hygiena

Shiga toxin-producing E. coli in dry flour, and then romaine lettuce. E. coli O104 in fenugreek sprout seeds. Recent announcements of foodborne illness outbreaks have begun involving unusual combinations of bacteria and foods. These out-of-the-ordinary outbreaks and recalls are a small but growing part of the 600 million documented food poisonings that occur worldwide every year according to the World Health Organization. Preventing outbreaks from these new combinations of pathogen and food demand a range of accurate tests that can quickly identify these bacteria. Over the past several years, outbreaks from unusual sources included:

  • E. coli O121 (STEC) in flour: Last summer, at least 29 cases of a E. coli O121 infection were announced in six Canadian provinces. The source arose from uncooked flour, a rare source of such infections because typically flour is baked into final products. Eight people were hospitalized, and public health officials have now included raw, uncooked flour as well as raw batter and dough as a source of this type of infection.
  • E. coli O104:H4 in fenugreek sprouts: One of Europe’s biggest recent outbreaks (affecting more than 4,000 people in Germany in 2011, and killing more than 50 worldwide) was originally thought to be caused by a hemorrhagic (EHEC) E. coli strain that from cucumbers, but was but was later found to be from an enteroaggregative E. coli (EAEC) strain in imported fenugreek seeds—the strain had acquired the genes to produce Shiga toxins.
  • Mycoplasma in New Zealand dairy cows: While not unusual in cattle, the incident reported in August marks the pathogen’s first appearance in cows in New Zealand, a country known for strict standards on agricultural hygiene. The microorganism is not harmful to people, but can drastically impact livestock herds.
  • Listeria monocytogenes in food sources: Listeria monocytogenes causes fewer but more serious incidence of food poisoning due to a higher death rate compared to Salmonella and Campylobacter. Whereas Listeria has been historically associated with dairy and ready to eat cooked meat products, recent outbreaks have been associated with fruit, and the FDA, CDC and USDA are conducting a joint investigation of outbreaks in frozen as well as in fresh produce.
  • Listeria in cantaloupe: In 2011, one of the worst foodborne illnesses recorded in the United States killed 20 and sickened 147, from Listeria monocytogenes that was found in contaminated cantaloupes from a farm in Colorado. The outbreak bloomed when normal background levels of the bacteria grew to deadly concentrations in multiple locations, from transport trucks to a produce washer that was instead designed for potatoes.

The outbreaks underscore the fundamental need to have a robust food safety program. Bacteria can colonize many different locations and the opportunity is created by a change in processing methods and/or consumer use or misuse of products. So robust risk assessment and preventative QA procedures need to be frequently reviewed and supported by appropriate surveillance methods.

Food safety and public health agencies like the European Food Safety Authority (EFSA) or the CDC have employed a wide range of detection and identification tests, ranging from pulse field gel electrophoresis (PFGE), traditional cell culture, enzyme immunoassay, and the polymerase chain reaction (PCR). In the case of Germany’s fenugreek-based E. coli outbreak, the CDC and EFSA used all these techniques to verify the source of the contamination.

These tests have certain advantages and disadvantages. Cell culture can be very accurate, but it depends on good technique and usually takes a long time to present results. PFGE provides an accurate DNA fingerprint of a target bacteria, but cannot identify all strains of certain microorganisms. Enzyme immunoassays are precise, but can produce false-positive results in certain circumstances and require microbiological laboratory expertise. PCR is very quick and accurate, but doesn’t preserve an isolate for physicians to test further for pathogenic properties.

Identification of the pathogens behind foodborne contamination is crucial for determining treatment of victims of the outbreak, and helps public health officials decide what tools are necessary to pinpoint the outbreak’s cause and prevent a recurrence. Rapid methods such as the polymerase chain reaction (PCR), which can quickly and accurately amplify DNA from a pathogen and make specific detection easier, are powerful tools in our efforts to maintain a safe food supply.

Recently, scientists and a third-party laboratory showed that real-time PCR assays for STEC and E. coli O157:H7 could detect E. coli O121, O26 and O157:H7 in 25-g samples of flour at levels satisfying AOAC method validation requirements. The results of the study demonstrated that real-time PCR could accurately detect stx, eae and the appropriate E. coli serotype (O121, O26 or O157:H7) with no statistical difference from the FDA’s Bacteriological Analytical Manual (BAM) cell culture method.

Agencies like the World Health Organization and CDC have repeatedly stated that historical records of food poisoning represent a very small percentage of true incidents occurring every year worldwide. Many of today’s most common food pathogens, like Listeria monocytogenes, E. coli O157:H7 or Campylobacter jejuni, were unknown 30 years ago. It’s not clear yet if unusual sources of contamination arise from increasing vigilance and food safety testing, or from an increasingly interdependent, globally complex food supply. No matter the reason, food producers, processors, manufacturers, distributors and retailers need to keep their guard up, using the optimum combination of tools to protect the public and fend off food pathogens.

Listeria

Four Pathogens Cause Nearly 2 Million Foodborne Illness Cases a Year

By Food Safety Tech Staff
No Comments
Listeria

The CDC estimates that Salmonella, E. coli O157, Listeria monocytogenes and Campylobacter cause 1.9 million cases of foodborne illness in the United States. A report just released from the Interagency Food Safety Analytics Collaboration (IFSAC) analyzed data from more than 1000 foodborne disease outbreaks involving these pathogens from1998 through 2013.

The report found the following:

  • Salmonella illnesses came from a wide variety of foods (more than 75% came from the seven food categories of seeded vegetables, eggs, chicken, other produce, pork, beef and fruit.
  • More than 75% of E.coli O157 illnesses were linked to vegetable row crops, like leaf greens, and beef.
  • More than 75% of Listeria monocytogenes illnesses came from fruits and dairy products.
  • More than 80% of non-dairy Campylobacter illnesses were linked to chicken, other seafood (i.e., shellfish), seeded vegetables, vegetable row crops, and other meat and poultry (i.e., lamb or duck).

A copy of the report, “Foodborne illness source attribution estimates for 2013 for Salmonella, Escherichia coli O157, Listeria monocytogenes, and Campylobacter using multi-year outbreak surveillance data, United States”, is available on the CDC’s website.

Reduce Foodborne Illness Causing Microorganisms through a Structured Food Safety Plan

By James Cook
1 Comment

In 2011 three U.S. government agencies, the CDC, the FDA and the USDA’s Food Safety Inspection Service (FSIS) created the Interagency Food Safety Analytics Collaboration (IFSAC). The development of IFSAC allowed these agencies to combine their federal food safety efforts. The initial focus was to identify those foods and prioritize pathogens that were the most important sources of foodborne illnesses.

The priority pathogens are Salmonella, E. coli O157:H7, Listeria monocytogenes and Campylobacter. To research the most important product sources, the three agencies collaborated on the development of better data collection and developed methods for estimating the sources of foodborne illnesses. Some of this research was to evaluate whether the regulatory requirements already in effect were reducing the foodborne pathogens in a specific product matrix. The collection, sharing and use of this data is an important part of the collaboration. For example, when the FDA is in a facility for routine audit or targeted enforcement, they will generally take environmental swabs and samples of air, water and materials, as appropriate, which are then tested for the targeted pathogens. If a pathogen is found, then serotyping and pulsed-field gel electrophoresis (PFGE) fingerprinting is performed, and this is compared to the information in the database concerning outbreaks and illnesses. This data collection enables the agencies to more quickly react to pinpoint the source of foodborne illnesses and thereby reduce the number of foodborne illnesses.

The IFSAC strategic plan for 2017 to 2021 will enhance the collection of data. The industry must be prepared for more environmental and material sampling. Enhancement of data collection by both agencies can be seen through the FSIS notices and directives, and through the guidance information being produced by the FDA for FSMA. Some examples are the raw pork products exploratory sampling project and the FDA draft guidance for the control of Listeria monocytogenes in ready-to-eat foods.

Starting May 1 2017, the next phase of the raw pork products exploratory sampling project will begin. Samples will be collected and tested for Salmonella, Shiga-toxin producing E. coli (STECs), aerobic plate count and generic E. coli. In the previous phase, the FSIS analyzed 1200 samples for Salmonella for which results are published in their quarterly reports. This is part of the USDA FSIS Salmonella action plan published December 4, 2013 in an effort to establish pathogen reduction standards. In order to achieve any objective, establishing baseline data is essential in any program. Once the baseline data is established and the objective is determined, which in this situation is the Health People 2020 goal of reducing human illness from Salmonella by 25%, one can determine by assessment of the programs and data what interventions will need to take place.

The FDA has revised its draft guidance for the control of Listeria monocytogenes in ready-to-eat food, as per the requirement in 21 CFR 117 Current Good Manufacturing Practice, Hazard Analysis and Risk-Based Preventive Controls for Human Foods, which is one of the seven core FSMA regulations. Ready-to-eat foods that are exposed to the environment prior to packaging and have no Listeria monocytogenes control measure that significantly reduces the pathogen’s presence, will be required to perform testing of the environment and, if necessary, testing of the raw and finished materials. Implementing this guidance document helps the suppliers of these items to cover many sections of this FSMA regulation.

The purpose of any environmental program is to verify the effectiveness of control programs such as cleaning and sanitizing, and personnel hygiene, and to identify those locations in a facility where there are issues. Corrective actions to eliminate or reduce those problems can then be implemented. Environmental programs that never find any problems are poorly designed. The FDA has stated in its guidance that finding Listeria species is expected. They also recommend that instead of sampling after cleaning and/or sanitation, the sampling program be designed to look for contamination in the worst-case scenario by sampling several hours into production, and preferably, just before clean up. The suggestion on this type of sampling is to hold and test the product being produced and to perform some validated rapid test methodology in order to determine whether or not action must be taken. If the presence of a pathogen is confirmed, it is not always necessary to dispose of a product, as some materials can be further processed to eliminate it.

With this environmental and product/material testing data collected, it is possible to perform a trends analysis. This will help to improve sanitation conditions, the performance of both programs and personnel, and identity the need for corrective actions. The main points to this program are the data collection and then the use of this data to reduce the incidence of foodborne illness. Repeated problems require intervention and resolution. Changes in programs or training may be necessary, if they are shown to be the root cause of the problem. If a specific issue is discovered to be a supply source problem, then the determination of a suppliers’ program is the appropriate avenue to resolve that issue. Generally, this will mean performing an audit of the suppliers program or reviewing the audit, not just the certificate, and establishing whether they have a structured program to reduce or eliminate these pathogens.

Continue to page 2 below.

USDA Logo

FSIS to Share Food Safety Data from Slaughter and Processing Facilities

By Food Safety Tech Staff
No Comments
USDA Logo

USDA’s Food Safety and Inspection Services (FSIS) has announced a plan to share more information about food safety at domestic slaughter and processing facilities. The Establishment-Specific Data Release Strategic Plan will serve to help consumers make more informed food choices, encourage facilities to improve performance, and provide more insights into the strengths and weaknesses of practices at the facilities.

“FSIS’ food safety inspectors collect vast amounts of data at food producing facilities every day, which we analyze on an ongoing basis to detect emerging public health risks and create better policies to prevent foodborne illness,” said USDA Deputy Under Secretary for Food Safety Al Almanza in an agency release. “Consumers want more information about the foods they are purchasing, and sharing these details can give them better insight into food production and inspection, and help them make informed purchasing decisions.”

The datasets will be published quarterly on data.gov, beginning 90 days after they are published in the Federal Register. FSIS will provide information about processes used at each facility, along with facility codes to allow for the combination of future datasets by facility. The agency will also release results for Listeria monocytogenes and Salmonella in ready-to-eat and processed egg products; Shiga Toxin-producing Escherichia coli and Salmonella in raw, non-intact beef products; Salmonella and Campylobacter in young chickens and turkeys, comminuted poultry and chicken parts; testing data of routine chemical residue in meat and poultry; and advanced meat recovery test data.

USDA Logo

USDA Poultry Standards Could Reduce Illnesses by 50,000 Annually

By Food Safety Tech Staff
No Comments
USDA Logo

The USDA has finalized federal standards to lower the incidence of Salmonella and Campylobacter in ground chicken and poultry (including raw chicken breasts, legs and wings, which comprise about 80% of the chicken that American’s purchase). FSIS updated its microbial testing schedule at poultry facilities and will also start posting food safety performance about companies online.

“This approach to poultry inspection is based on science, supported by strong data, and will truly improve public health,” said USDA Deputy Under Secretary for Food Safety Al Almanza in an agency press release. “The new performance standards will complement the many other proactive, prevention-based food policies that we’ve put in place in recent years to make America’s supply of meat and poultry safer to eat.”

Intended to achieve at least a 30% reduction in Salmonella illnesses, a pathogen reduction performance standard for chicken parts, ground chicken and ground turkey is being finalized by FSIS. It is doing the same to achieve a 32% reduction in illnesses from Campylobacter in chicken parts and ground chicken. FSIS estimates a low prevalence of Campylobacter in ground turkey and is thus aiming for a 19% reduction.

“Over the past seven years, USDA has put in place tighter and more strategic food safety measures than ever before for meat and poultry products. We have made strides in modernizing every aspect of food safety inspection, from company record keeping, to labeling requirements, to the way we perform testing in our labs,” said Agriculture Secretary Tom Vilsack in the release. “These new standards, in combination with greater transparency about poultry companies’ food safety performance and better testing procedures, will help prevent tens of thousands of foodborne illnesses every year, reaching our Healthy People 2020 goals.”

USDA Issues Best Practices for Minimizing Salmonella and Campylobacter in Poultry

By Food Safety Tech Staff
No Comments

As part of a federal goal to achieve a 25% reduction in Salmonella illnesses related to meat and poultry products by 2020, USDA’s FSIS has revised and published guidelines for poultry processors. The document, “FSIS Compliance Guideline for Controlling Salmonella and Campylobacter in Raw Poultry”, intends to provide best practices based on scientific and practical considerations for minimizing pathogen levels and meeting FSIS food safety requirements.

The guidance recommends preventive measures that poultry companies can make in the following areas:

  • Pre-harvest (on the farm)
  • Sanitary dressing procedures
  • Further processing practices
  • Antimicrobial interventions
  • Management practices

FSIS is also seeking comment on the fourth edition of the updated document.

There has been little change in the number of confirmed Salmonella cases, which sicken more than 1 million people annually in the United States. The guidance is part of FSIS’ Salmonella Action Plan, which was announced in December 2013.