Tag Archives: data

Laboratory Information Management System

How LIMS Facilitates ISO 17025 Certification in Food Testing Labs

By Dr. Christine Paszko
No Comments
Laboratory Information Management System

In order to ensure that a food testing laboratory maintains a quality management system that effectively manages all aspects of laboratory operations that affect quality, there are numerous records, reports and data that must be recorded, documented and managed.

Gathering, organizing and controlling all the data that is generated, managed and stored by food testing laboratories can be challenging to say the least. As the ISO Standards and regulatory requirements for food testing laboratories evolve, so does the need for improved quality data management systems. Historical systems that were very efficient and effective 10 years ago, may no longer meet the demanding requirements for ISO 17025 certification. One way to meet the challenge is to turn to automated solutions that eliminate many of the mundane tasks that utilize valuable resources.

There are many reasons for laboratories to seek this certification, including to enhance reputation, gain a competitive advantage, reduce operational costs, and meet regulatory compliance goals. A major advantage for food testing laboratories to obtain ISO 17025 Certification is that is tells prospective clients that the laboratory has a strong commitment to quality, and they hold the certification to prove it. This certification not only boosts a laboratory’s reputation, but it also demonstrates an organization’s commitment to quality, operational efficiency and management practices. Proof of ISO 17025 Certification eliminates the need for independent supplier audits, because the quality, capability and expertise of the laboratory have been verified by external auditors. Many ISO Certified laboratories will only buy products (raw materials, supplies and software) and services from other ISO-certified firms so that they do not need to do additional work in qualifying the vendor or the products.

There are many areas in which a LIMS supports and promotes ISO 17025 compliance. Laboratories are required to manage and maintain SOPs (standard operating procedures) that accurately reflect all phases of current laboratory activities such as assessing data integrity, taking corrective actions, handling customer complaints, managing all test methods, and managing all documents pertaining to quality. In addition, all contact with clients and their testing instructions should be recorded and kept with the job/project documentation for access by the staff performing the tests/calibrations. With a computerized LIMS, laboratory staff can scan in all paper forms that arrive with the samples (special instructions, chain of custody (CoC), or any other documentation). This can be linked to the work order and is easy assessable by anyone who has  the appropriate permissions. The LIMS provides extensive options for tracking and maintaining all correspondence, the ability to attach electronic files, scanned documents, create locked PDFs of final reports, COAs (Certificate of Analysis), and CoCs.

Sample Handling and Acceptance

Laboratories are required to have a procedure that defines all processes that a sample is subjected to while in the possession of the laboratory. Some of these procedures will relate to sample preservation, holding time requirements, and the type of container in which the sample is collected or stored. Other information that must be tracked includes sample identification and receipt procedures, along with acceptance or rejection criteria at log-in. Sample log-in begins and defines the entire analysis and disposal process, therefore it is important that all sample storage, tracking and shipping receipts as well as sample transmittal forms (CoC) are stored, managed and maintained throughout the sample’s analysis to final disposal. To summarize, the laboratory should have written procedures around the following related to sample preservation:

  • Preservation
  • Sample identification
  • Sample acceptance conditions
  • Holding timesShipping informationStorage
  • Results and Reporting
  • Disposal

The LIMS must allow capture and tracking of data throughout the sample’s active lifetime. In addition, laboratories are also required to document, manage and maintain essential information associated with the analytical analysis, such as incubator and refrigerator temperature charts, and instrument run files/logs. Also important is capturing data from any log books, which would include the unique sample identifier, and the date and time of the analysis, along with if the holding time is 72 hours or less or when time critical steps are included in the analysis, such as sample preparations, extractions, or incubations. Capturing the temperature data can be automated such that the data can be directly imported into the LIMS. If there is an issue with the temperature falling outside of a range, an email can automatically be spawned or a message sent to a cell phone to alert the responsible party. Automation saves time and money, and can prevent many potential problems via the LIMS ability to import and act on real-time data.

If any instrumentation is used in the analysis, the following information must also be recorded in the instrument identification (to ensure that it is in calibration, and all maintenance and calibration records are current), operating conditions/parameters, analysis type, any calculations, and analyst identification. In addition to analyst identification, laboratories must also keep track of analyst training as it relates to their laboratory functions. For example, if an analyst has not been trained on a particular method or if their certification has expired, the LIMS will not allow them to enter any result into the LIMS for the method(s) that they have not been trained/certified to perform. The LIMS can also send automated alerts when the training is about to expire. Figure 1 shows a screen in the LIMS that manages training completed, scheduled, tests scores, and expiration dates of the training, along with the ability to attach any training certificates, exams, or any other relevant documentation. Laboratory managers can also leverage the LIMS to pull reports that compare analyst work quality via an audit report. If they determine that one analyst has a significant amount of samples that require auditing, they can then investigate if there is a possible training issue. Having immediate access to data allows managers to more rapidly identify and mitigate potential problems.

Laboratory Information Management System
LIMS manages a variety of aspects in training, including when it has been completed, scheduled, tests scores, and expiration dates. (Click to enlarge)

Another major area that a LIMS can provide significant benefit is around data integrity. There are four main elements of data integrity:

  1. Documentation in the quality management system that defines the data integrity procedure, which is approved (signed/dated) by senior management.
  2. Data integrity training for the entire laboratory. Ensures that the database is secure and locked and operates under referential integrity.
  3. Detailed, regular monitoring of data integrity. Includes reviewing the audit trail reports and analyzing logs for any suspicious behavior on the system.
  4. Signed data integrity documentation for all laboratory employees indicating that they have read and understand the processes and procedures that have been defined.

The LIMS will enhance the ability to track and manage data integrity training (along with all training). The LIMS will provide a definition of the training, the date, time, and topic (description); instructor(s); timeframe in which the training is relevant, reminders on when it needs to be repeated; along with  certifications, quiz scores, copies of quizzes, and more. With many tasks, the LIMS can provide managers with automated reports that are sent out at regular time intervals, schedule training for specific staff, provide them with automatic notification, schedule data integrity audits, and to facilitate FDA’s CFR 21 part 11 compliance (electronic signatures). The LIMS can also be configured to automatically have reports signed and delivered via fax or email, or to a web server. The LIMS manages permissions and privileges to all staff members that require access to specific data and have the ability to access that data, along with providing a secure document control mechanism.

Laboratories are also required to maintain SOPs that accurately reflect all phases of current laboratory operations such as assessing data integrity test methods, corrective actions and handling customer complaints. Most commercial LIMS provide the ability to link SOPs to the analytical methods such that analysts can pull down the SOP as they are doing the procedure to help ensure that no steps are omitted. Having the SOPs online ensures that everyone is using the same version of the locked SOPs, which are readily available and secure.

Administrative Records, Demonstration of Capability

Laboratories are required to manage and maintain the following information on an analyst working in the laboratory: Personal qualifications and experience and training records (degree certificates, CV’s), along with records of demonstration of capability for each analyst and a list of names (along with initials and signatures) for all staff that hold the responsibility to sign or initial any laboratory record. Most commercial LIMS will easily and securely track and manage all the required personnel records. Individuals responsible for signing off on laboratory records can be configured in the LIMS to not only document the assignment of responsibility but also to enforce it.

Reference Standards and Materials

Because the references and standards that laboratories use in their analytical measurements affect the correctness of the result, laboratories must have a system and procedures to manage and track the calibration of their reference standards. Documentation that calibration standards were calibrated by a body that can prove traceability must be provided. Although most standards are purchased from companies that specialize in the creation of reference standards, there are some standards that laboratories create internally that can also be traced and tracked in the LIMS. Most commercial LIMS will also allow for the creation, receipt, tracking, and management of all supplies in an inventory module, such that they document the reference material identification, lot numbers, expiration date, supplier, and vendor, and link the standard to all tests to which it was linked.

The ISO 17025 Standard identifies the high technical competence and management system requirements that guarantee your test results and calibrations are consistently accurate. The LIMS securely manages and maintains all the data that supports the Quality Management System.

Key advantages of food testing laboratories that have achieved ISO 17025 Certification with a computerized LIMS that securely and accurately stores all the pertinent data and information:

  • Proof of ISO 17025 Certification eliminates the need for supplier audits, because the quality, capability and expertise of the laboratory have been demonstrated by the certification.
  • Knowledge that there has been an evaluation of the staff, methods, instrumentation and equipment, calibration records and reporting to ensure test results are valid.
  • Verification of operational efficiency by external auditors that have validated the quality, capability and expertise of the laboratory.
  • Defines robust quality controls for the selection and authentication of methods, analyzing statistics, controlling and securing data.
  • Clearly defines each employee’s roles, responsibilities and accountability.
  • Confidence that the regulatory and safety requirements are effectively managed and met in a cost efficient-manner.
Traceability in food manufacturing, Honeywell

Traceability Not a Trend. It’s a Reality.

By Maria Fontanazza
No Comments
Traceability in food manufacturing, Honeywell

Businesses throughout the food supply chain are using a variety of traceability tools to capture critical information during the path from the field to the consumer. Traceability has always been viewed as an important capability within the supply chain, but FSMA, coupled with retailer and consumer demand, is pushing it to the highest levels yet.

Technology solutions that provide continuous identification and verification include mobile computers, scanners, RFID and mobile printers. While growers, packers, wholesalers, distribution centers and retailers involved in the fresh produce, poultry, meat, and seafood segments are using these technologies, speculation continues about adequate adoption levels.

The larger food providers are embracing track and trace technologies, while smaller business have been much slower to adopt, according to Bruce Stubbs, director of industry marketing at Honeywell Sensing & Productivity Solutions. “It’s going to be difficult to convince the smaller growers to invest in the technology—a lot of them see it as a cost,” he says. “What’s helping is that the retailers are starting to push back and say they are going to require their suppliers to be compliant with [traceability] mandates and if not, they won’t do business with them.”

Out in the field, companies are leveraging scanning and printing technologies, including smart printing technology (essentially a PC with printing capability). The printer hosts data capture and traceability software, providing the tasks and traceability through the software to the scanning devices. It can capture and print the food traceability label, which contains the discreet information, at the point of harvest. At the transportation level, businesses are using mobile computers to scan and capture product information that tracks down to the details from what part of a field, or even which tree in an orchard, a product has been harvested. Traceability technologies are including sensors throughout the cold chain to monitor temperature and humidity as the product is transported from point A to B. All information moves forward into the production facility and the retailer’s distribution center. Once at the retail store level, grocers will be able to pinpoint, within potentially thousands of stores, the specific batches and lots, a key capability in the instance of product issues and recalls.

Traceability is a holistic process, and the potential for its continued growth within the food industry is high. “I see it becoming more prevalent as consumers demand it, and retailers and manufacturers must adapt. I also see them moving away from paper,” says Stubbs. “We’re close; it’s almost like there’s a trickle in the dam right now, but I really believe that over the next couple years, the dam will break and most [companies] will need to adopt [traceability solutions] or they won’t be able to effectively do business with a lot of the food retailers.”

Stubbs also anticipates an increased adoption of 2-D barcodes versus 1-D linear laser barcodes, as 2-D barcodes can contain far more information. “We are at the tip of those technologies—they exist. It’s just the integration of these systems and providing the information in a format at the supplier or food manufacturer level,” he says.

How is your company implementing traceability solutions? What challenges and benefits are occurring as a result?

Mobile FSQA apps

Are Mobile Apps a Game Changer for Food Safety Professionals?

By Maria Fontanazza
No Comments
Mobile FSQA apps

Many food safety and quality assurance (FSQA) professionals are constantly on the go in the workplace. They can be found on the floor of a manufacturing facility, off-site conducting supplier audits, or out in the field performing pre-harvest inspections, just to name a few locations during their busy day. “To benefit from food safety automation, these folks need more than the capability of logging into a system through a desktop,” says Levin. “They need a true mobile app that provides automation support out in the field,” says Barbara Levin, senior vice president of marketing and customer community at SafetyChain.

While other industries have been quick to adopt mobile platforms, the food safety industry has been much slower. Adoption is, however, gaining traction. In a recent conversation with Food Safety Tech, Levin talks about the value of FSQA mobile apps in today’s environment, where access to real-time, actionable data is crucial for the food industry.

Food Safety Tech: What common challenges faced by FSQA teams do mobile apps specifically address?

Barbara Levin: Mobile apps allow collection of FSQA at the point of origin, along with immediate access to the information for analysis, CAPA and reporting:

  1. Getting timely feedback on non-compliances for CAPA. When FSQA data is inspected at the end of the shift on paper, finding non-conformances often means rework. The instances in which this happens are too numerous to count. With mobile apps, you receive timely feedback. Information in the system is immediately analyzed to specs, so you’re catching non-compliances at the earliest point possible.
  2. Consistency in following your FSQA programs. This could be your USDA HACCP plan, FSMA HARPC plan, GFSI program, customer quality attributes and other components of your FSQA programs. Program components change all the time (i.e., Specifications, processes, rules in HACCP, GFSI code, forms, workflow, etc). Are FSQA managers confident that everyone is following the most up-to-date program? Is everyone following the workflow and doing everything in the right order? Are they completing tasks accurately? Using the right forms? Unfortunately companies find out that steps are missed or outdated forms were used during an audit; or when missed steps result in expensive rework or in the worst case, a customer rejection, withdrawal or a recall.

    Mobile apps will always have the most up-to-date forms, processes, specs and more. They act as a coach, leading the FSQA team member through the proper steps. When you enter incorrect or incomplete information on paper, it may not be detected until the end of the day or shift. A mobile app will issue an alert if incorrect information is entered; and it won’t let you submit a form if all fields aren’t complete. Because all of the updates are made in the system and pushed out to the app, if the specification changes while an FSQA team member is on the plant floor, when he or she logs in, the latest spec will always be there. You’re ensured that only the up-to-date program is being followed and that only the most up-to-date forms are being used.

  3. A lack of information for continuous improvement trending. If you have multiple facilities and products (resulting in mountains of FSQA paper), it’s a huge, manual task to make all of the data useful and relevant. With mobile apps, all FSQA data is entered “once and done,” making it accessible and actionable for immediate FSQA result tracking, daily KPI reporting and continuous improvement.
  4. Audit readiness. Mobile apps take audit readiness to a different level. With FSMA and GFSI, the saying is, if it’s not documented, you didn’t do it. By collecting FSQA data at the point of origin, all data is time and data stamped and uploaded to your permanent FSQA record. There’s no redundant data entry, mistakes are avoided, and there’s greater record efficacy that helps companies be audit ready, on demand.
Mobile FSQA apps
Mobile forms capture safety and quality data at the point of origin; data is actionable and then uploaded into a central repository for reporting and audit readiness. Image courtesy of SafetyChain Software. (Click to enlarge)

FST: What is the biggest benefit that FSQA mobile apps offer? 

Levin: The first benefit is real-time feedback. If you think about how things were done in the past, using an example of a pre-harvest inspection, you’re out there with a clipboard, making observations and recording non-compliances. Then you have to go back and enter the information into a spreadsheet, or turn it into a PDF, and send it to the food safety manager, who may or may not be sitting at his or her desk. Waiting to get a response equals time lost. And in the food industry, time equals money.

When you’re entering information into a mobile app, it analyzes that information in real-time and according to specifications. When there are non-compliances, alerts are pushed to the FSQA manager – wherever [he or she is located]. The manager can then generate a CAPA, which can then be completed, documented on the mobile device and electronically signed off by the manager. The process is expedited, and expensive rework is avoided.  

The second benefit involves data efficiencies. When data is collected on a mobile device, it’s entered only once and is then immediately available for multiple uses, such as a customer’s certificate of analysis, attachment to GFSI code for audit, or to be produced upon demand for a regulatory inspector. With a manual system, there’s a tremendous amount of redundant data entry. We hear this all the time from food safety folks— that they feel like they’re managing paper instead of food safety programs. When data is entered into a mobile app, it’s accessible immediately to FSQA, operations, vendor purchasing, management – any stakeholder who has a need.

“The Power of FSQA Automation Via Mobile Applications” Download the whitepaperFST: What approach should be taken to encourage the investment in and implementation of an on-the-go FSQA mobile platform?

Levin: I would love to think that in an ideal world, the creation of operational efficiencies that enable a higher level of confidence that you are sending out safer food is enough. Food companies are businesses, and they have obligations to consumers, which they take very seriously. But they also have obligations to their shareholders. When we talk to folks who really want this, it’s very easy to create a business case to senior management based on ROI. When you can close the gap by hours and days in the food industry, that time equals money. Avoiding rework also saves money.  And there’s ROI in faster sales throughput and increased shelf life by reducing hold and release times. We’ve heard from our customers that the solutions have paid for themselves and started to create ROI within three to six months.

Thermo Scientific's Integrated Informatics LIMS

How Integrated Informatics Benefit Regulatory Compliance, Defensible Data, Traceability and Brand Protection

By Trish Meek
No Comments
Thermo Scientific's Integrated Informatics LIMS

To understand why an integrated informatics solution is important to manufacturers in the food and beverage industry, it helps to first consider the unique challenges this industry faces. Simply put, food production has scaled into a global business so rapidly that oversight has hardly kept pace. Even the stricter regulatory stances taken by the FDA and the European Union in the past decade are effectively catch-up efforts.

The broader food industry, which for purposes of this article will also comprise the beverage industry, has globalized quickly and, many would argue, haphazardly. It actually wasn’t that long ago that the products we purchased in our local food store were produced locally or regionally. Seasons determined selections as well—if you wanted a tomato in November, you would pay a premium for that indulgence.

Seasons and geography no longer constrain what we can buy and when. By far the world’s largest industry—with a combined revenue of more than $4 trillion, the food industry has used its massive scale to overcome historical limitations. We now take for granted that our grocery carts can be filled with fresh products that may come from thousands of miles away. And those products may have been grown, processed and shipped in multiple countries before they reach our local grocer.

The complexity and scale of this modern food supply chain is the industry’s greatest challenge and regulators’ greatest worry (on consumers’ behalf). How can growers, producers, processors, packagers, shippers and others in the global supply chain secure a food chain that’s so distributed? How can regulators ensure safety without restricting choice or inflating prices?

The Bits and “Bytes” of Food Safety

The food industry—and its regulators—would likely agree on one thing: A system this massive cannot operate on trust alone, as it once did. The grower with generations of experience on the land, for example, is now too far removed from end consumers. A finished product may contain one farmer’s product and those from five others, all from different regions worldwide.

Integrated informatics may seem like an unlikely fix for modernizing a highly distributed food chain, but it’s actually perfectly suited. An integrated informatics platform provides access to massive amounts of information in a timely fashion, dramatically improving decision-making. It does this by making information rapidly available to many stakeholders and by ensuring that it’s reliable.

Consider this example. A hypothetical lab uses an analytical instrument to detect pesticides in barley, and regulation dictates that this data be compared to allowable maximum residue limits (MRLs). If the barley sample exceeds allowable MRLs, the manufacturer must identify everywhere that ingredient is being used, quarantine it and determine who produced it. All this must happen quickly and according to strict procedures.

Procedures are critical. Not only must the lab have a process for checking against current limits for a pesticide, for example, but also that analytical information must be carefully tracked with the appropriate sample, and the method used to deliver the result must be consistent between different samples and users. Without an integrated informatics solution, adhering to these procedures, defending the quality of the data, and making it usable would be nearly impossible.

The Role of Informatics in Compliance

Gathering the bits and bytes of data, following procedures and making the data useful enterprise-wide is important, but regulatory compliance is where most industry attention is focused today. This is another area where integrated informatics provides significant benefits.

As mentioned above, food industry growth significantly outpaced regulatory oversight in the past decade. Globalization was rapid and inevitable, but so too were food safety breaches, and with progress came stories of tainted fruits, vegetables, meats, cereals, nut butters and much more. Suddenly we had a trust issue. With a food chain that’s distributed across many borders and jurisdictions, how is the public’s trust best protected and by whom?

From the Food Safety Modernization Act (FSMA) to EU Regulation No. 178/2002, we’ve seen a heightened regulatory focus, and the most common themes are traceability, authenticity and risk-based approaches. The common denominator here is food chain security.

So what does all of this mean for multinational food and beverage producers? It means having to conform to multiple regulatory requirements for each distribution market, and there are often many. And this is a data management and reporting headache. Fortunately, however, common standards such as ISO 22000 exist that enable companies to standardize their processes enterprise-wide, achieving levels of operational rigor and quality that satisfy multiple regulatory authorities at once.

So where do informatics fit into this regulatory compliance landscape? In a typical multinational food producer, a significant amount of the quality data is delivered by the laboratory. Raw materials are analysed for pesticides, herbicides, nutritional content and so on. Packaged products are monitored for shelf-life compliance. Plant hygiene is monitored using microbiological samples taken from across the facility. Records from all of these distinct, but interrelated activities are critical for demonstrating compliance.

Defending Data

The shift in recent years has been toward prevention instead of crisis response. Regulators now focus on auditing food and beverage producers to assess their practices prior to any adverse event. For companies with good systems in place, time-consuming audits will be less frequent, so it pays to have systems in place that demonstrate that data is reliable and defensible.

Audits can be daunting. The producer must prove that activities were carried out correctly, that records are properly collected and that supporting information is accurate. Auditors typically pick a starting point in a process and follow the trail. They may start by looking at the data associated with a released batch of product; perhaps quality assurance samples; follow the trail to cleaning validation, and then review individual laboratory results, including entire methods, instrument calibration, user training, etc. At each point of the audit, producers must show evidence of compliance—even the smallest details.

With an integrated informatics solution, all evidence resides in a single platform. Hierarchies and relationships within the data records are automatically recorded and retained. Everything—from relationships between lots or batches of material; the connection between methods, specifications and results; the history of an instrument configuration, maintenance and calibration; and user training records—is in one place for easy retrieval and reporting.

Having one system of record not only codifies data capture, it also helps labs create standard operating procedures (SOPs). Establishing SOPs does several important things:

  • It ensures that all lab users are following the same process—no personal preferences for carrying out a specific test.
  • It makes sure that all necessary data is collected—by enforcing a series of data entry steps, labs can prevent a method from being marked complete until everything has been entered.
  • Labs can roll out updates to their processes by updating the method for all users at the same time.

Managing lab execution activities in this way means that data is more consistent; it is being collected in the same way for all users. It is also prone to fewer errors because users move stepwise through each stage of the measurement process, and they can stop a test whenever they encounter a problem.

Achieving Traceability

Traceability, the ability to verify the history, location or application of an item using documented information, has become increasingly more important for the food industry. And traceability is closely linked to compliance and data defensibility. Fortunately, traceability is another strength of an integrated informatics solution.

In practical terms, to demonstrate traceability we must be able to go either backwards or forwards within a set of process items and understand the complicated relationships. An integrated informatics solution lets us map relationships between “child” and “parent” batches, information that can also come from integrating ERP or process or production information management (PIMS) systems. By integrating all this information, manufacturers can trace a product back through intermediate products and raw materials and then forward again to any resultant batches that may be contaminated. In other words, with an integrated informatics solution, traceability is built in.

Brand Protection

Because of its size and fragmentation, the global food and beverage industry is a target for adulteration and counterfeiting. The Grocery Manufacturers Association estimates that these activities cost the industry $10–15 billion each year.

While the risk to consumers of adulteration can be deadly, as in the case of milk solids adulterated with melamine in China, much of the impact comes in the form of trust erosion and fraud. An example is Manuka honey, a premium product with purported health benefits that commands a high price. The entry of fraudulent producers into the market affects legitimate producers by creating uncertainly about all products, depressing sales and lowering prices.

Thermo Scientific's Integrated Informatics LIMS
Having access to data from all critical points in the food production chain is the most important safeguard against product recalls and loss of revenue for food manufacturers. Having an integrated informatics solution in place provides data when it is needed for quality checks in the production process, for management metrics reporting or to adhere to regulatory requirements. (Click to enlarge)

This is only one example, but it illustrates the larger problem: Once consumer trust erodes, it’s hard to regain. As it happens, however, honey has unique chemical markers that can be used to determine whether it has been adulterated. But isolating these markers involves complex analysis, including ultra- high-performance liquid chromatography (UHPLC), and methods that are highly specific, consistent and defensible.

Consistency and defensibility are hallmarks of an integrated informatics solution. For the honey producers, an informatics solutions, such a LIMS, can automate processes so that no non-conforming product is missed, establish compliance rules and checks for instrument calibration so that results are defensible, and standardize methods through built-in laboratory execution system (LES) capability.

Conclusion

An integrated informatics solutions is designed to address multiple business needs in the food and beverage industry, from compliance and data defensibility to traceability and brand protection. The complexity and scale of the modern food supply chain demands it.

Growers, producers, processers, packagers, shippers and others in the global supply chain are now interdependent, but not necessarily integrated. The only way to protect consumers, however, is to achieve this integration through a combination of voluntary and imposed compliance. And to achieve this compliance without undue burden on the industry and imposing higher costs on consumers, we need technology that is built for integration at scale—and informatics solutions have proven they are more than capable.

Sample6 executives, Tim Curran, Jim Godsey and Mike Koeris

Food Safety Testing Must Live Up to Higher Expectations

By Maria Fontanazza
1 Comment
Sample6 executives, Tim Curran, Jim Godsey and Mike Koeris

From sanitation and processing to testing and analysis to transportation and imports, government requirements of companies in the food industry are changing. Many companies are already prepared for the transformation that FSMA will bring. Within food testing and analysis, expectations will be higher than ever. Companies should be able to more accurately and rapidly identify contamination in order to take immediate action. What are some of the biggest concerns in testing and analysis? What changes can we expect? In a roundtable discussion with Sample6 executives, Michael Koeris, Ph.D., founder and vice president of operations, Tim Curran, CEO, and Jim Godsey, vice president of research & development, share their perspective on the hurdles that industry is facing and how innovative technology plays an important role in the future of food safety.

Key trends:

  • Focus in testing shifts from not just testing and recording data, but also analyzing and communicating results. Having data analysis and reporting skills will be a critical function for the next generation of food safety professionals.
  • Be proactive, not reactive. If you’re finding problems at the finished product level, it’s too late.
  • The need for stronger partnerships between industry and government, especially relating to providing industry with the tools to effectively gather and analyze data in a timely manner.

Food Safety Tech: What are the current industry challenges, especially related to advances in pathogen detection technology?

Tim Curran, CEO of Sample6, pathogen detection
Tim Curran, CEO of Sample6

Tim Curran: When I look at food companies and food safety managers, [their jobs] have become harder to do well, instead of easier. The environment in which they’re working is more challenging, and the pressures are increasing. There’s more regulatory scrutiny, whether we talk about FSMA or the regulatory environment [in general], and there are more testing and inspection [expectations].

Second, the nature of the foods that we need make for the U.S. population (and I think it is a trend around the world): Ready-to-eat products. We’re producing products that are more convenient for families where they won’t necessarily have a cook step down the road. The kinds of foods in demand have a higher risk profile.

Third is the globalization of food supplies. Raw materials are coming in from all different directions, and there is an increasing number of shipping points. That creates more pressure, and from a food safety perspective, that is a bad thing.

“It is okay to find positives for Listeria or Salmonella in the appropriate zones that are far away from food contact surfaces. It is inconceivable to have a plant that has no actual bacterial organisms living there.” -Michael KoerisFinally, there’s social media. There’s a lot of scrutiny from the public. Information around any kind of fear or recall is rapidly disseminated.

These factors add up to higher pressure, a higher bar, and a harder job to accomplish—and the tools and methods available to keep the plant safe and food safe are not keeping pace.

Although I think food plants want to test more at the point of contamination, it’s just not possible. Unless they have a sophisticated lab, most food companies ship out samples because enrichment is required. As a result, they’re getting feedback on the safety of their plant and food in two, three, or four days, depending on where they fall as a priority to that outside lab.

Jim Godsey: With FSMA, testing is decentralizing from the larger lab, which is typically staffed with experienced personnel, to the facility where those personnel don’t exist. Having a test with a workflow that can be easily accommodated by someone with a high school education is absolutely critical for the field.

Michael Koeris, Ph.D., founder and vice president of operations, Sample6, pathogen detection
Michael Koeris, Ph.D., founder and vice president of operations

Michael Koeris: Visibility of data is generally extremely poor, because many people touch individual data points or pockets of data. The hand-off between the different groups is usually shaky, and the timeliness of delivering data to the operators has been a huge issue. This has been an opportunity for us: Our control offering is an operating system for environmental control. It’s an open system, so it accepts both our data and other people’s data, enabling visibility across an entire corporate infrastructure. Plant managers and other [users] of these systems can generate timely reports so they can see what is happening on a daily basis.

FST: In considering professional development, what skills are necessary to ensure that employees will be well equipped to address the issues discussed here?

Godsey: The role of the food safety manager becomes a much more critical and challenging role. To support that, they need better tools; they need to know with a high degree of confidence that their facility has been tested, that the testing was done at the proper times and intervals, and that the data has been analyzed in a timely manner. It’s not just assay/analysis [or] reporting results anymore; it’s the holistic review of those results and translating that [information] into whether or not the plant is safe at that point in time.

Koeris: The persona of the food safety manager is changing. They need to see themselves as the brand protection manager. If you have food safety issues, your brand is at risk. We need to empower the food safety manager at the local level to act, remediate and change processes.

Jim Godsey, vice president of research & development, Sample6, pathogen detection
Jim Godsey, vice president of research & development

There also has to be fundamental change in the industry in how results are viewed. Not all tests are created equal. It is okay to find positives for Listeria or Salmonella in the appropriate zones that are far away from food contact surfaces. It is inconceivable to have a plant that has no actual bacterial organisms living there. This is not a pharmaceutical production facility. Setting the wrong goals at the corporate level of zero positives disincentivizes operators to not look hard enough. You have to actually understand the plant and then make sure that you’re safe with regards to your control plan.

FST: How do you expect the final FSMA rules and implementation process will impact industry?

Koeris: Most of the larger food players are already doing what FSMA mandates or will mandate. The medium and smaller processors will have to adapt and change. They have to implement better standards and more standards, more surveillance, and implement more rigorous processes. The [key] is to help them do this on a tight budget.

FSMA has increased awareness of food safety across the supply chain. It is still focused on the processors, but we know it doesn’t stop there; it doesn’t stop at the distributor or the retailer. Food safety has to be throughout that supply chain.

Having an understanding and awareness of all of the challenges that exist downstream—that will [lead to] the real innovation and increase in foods safety.

Is Your Document Control System Effective?

By Food Safety Tech Staff
No Comments

This article describes eight traits to look for in a good Document Control System, and the overlying benefits that can be reaped from using Document Control to drive compliance in your processes.

Document Control is one of the most common applications in compliance today. It allows an organization to manage the creation, approval, distribution and archiving of all controlled documents and processes. It is an integral part of Quality, Environmental Health and Safety (EHS), or Compliance Management systems. This is because in order to effectively maintain consistency in processes, job descriptions, work instructions, and more, an organization needs to ensure that records are controlled. It also keeps tasks on track and ensures that they are accomplished on time. This article describes eight traits to look for in a good Document Control System, and the overlying benefits that can be reaped from using Document Control to drive compliance in your processes. 

Eight characteristics of an effective Document Control System

1. Workflows for All Document Types: No two document types are alike. There are differences within each that should be taken into consideration. For example, a job description cannot be treated the same as a work instruction or procedure. Each of these types of documents may have separate approvers, managers, and workflows and should be handled in a unique manner. A good Document Control System can automate and manage documents efficiently. A great Document Control System can facilitate dedicated workflows for all document types, each complete with their own routing options.

2. Ability to Configure Metadata: When in the Document Control form, one of the critical aspects is the ability to segment that data and describe the type of document. This is accomplished through metadata, which is essentially a high level description of each document. It assigns a department that the document is associated with, describes priority level, ISO elements, and records specific information. Metadata also helps to categorize and report on data. It helps to search and filter so it can be found in the system and categorized. The key for an organization is to find a system that will allow it to configure metadata based on document type, in a flexible manner. This will allow them to change fields, add categories, keywords, and more. This configurability within Document Control forms is critical to adapt the Document Control System to meet unique business needs.

3. Integration with MS Office Documents: The majority of organizations use Microsoft Office to manage most of their documents and files such as Word, Excel, and PowerPoint are still the standard for creating documents within businesses today. Therefore, the ability for a Document Control System to work well with MS Office is an important distinction. This way, an organization can preserve the metadata and sync both components. If a change is made in the Document Control form, it is reflected in the Word file, and vice versa. This integration links the two components together, so that one is never inconsistent with the other. 

4. Intelligent Business Rules for Review and Approval: The power of an automated Document Control System lies in its ability to route documents along the workflow. Documents can’t just be checked in or out, there needs to be a process of approval and review as well as document sign off —it has to go through different phases of workflow. This makes flexible routing options a necessity in a Document Control System. A good Document Control System enables organizations to route documents to the next phase in the workflow, but also has intelligent business rules associated. 

5. Integration with Employee Training: A critical component to any Document Control System is that if a new document is created or an existing document is changed, people need to be trained. This is a vital reason for having Document Control process. During revision or creation of a document, the user should be able to specify the type of training associated with it. A bonus is the ability to automatically integrate training. Some companies include a “waiting release” phase. This means that before the document is released, it is out in a holding pattern—this is when training happens. The benefit is that employees can train on the document before it is released to world, so that when the document is released employees are already trained and knowledgeable on it. Some systems automatically have a Training System built into Document Control, which allows them to integrate Training with Document Control and to test their knowledge on that document. Ultimately, when there are changes made to any document, employees need to be apprised of new procedures and specifications and trained on any new revisions that are released. This process should be automated—manual tracking and training processes leave room for error. A Document Control System integrated with the Training application helps to easily define who needs training on each document. It also automatically updates training records for each employee, allows for self training, and automatically updates each employee status upon training completion. 

6. Change Request and Revision Control: Document Control is a continual process. Once documents are created and approved, there will most likely be changes made in the future. Change control and revision control in itself should be a workflow to ensure controlled access of all documents and changes to documents. A good Document Control System will have its own change request workflow that includes revision review and approval. It will also hold the original document until the new document is changed—once the new document is approved, it will take the old document’s place. Sometimes an organization will have changes that affect multiple documents. In this case, the system should be able to make a global change. This allows an organization to make multiple document changes within the same workflow and will show all documents to be changed, all affected areas, and where it will be changed. This is important because when making changes to a document, other documents may be involved or affected. A good Document Control System includes a multi-document change request that will save time and resources for the company. 

7. Reporting: When an organization has a lot of documents and data going into the system, it needs visibility to look at that data in a meaningful way. Using metadata can help by filtering documents by phase, keyword, and more. Having a system to filter data this data is key. Good Document Control has reporting engines built into, or tied to it. This allows the system to quickly and effectively look at data on aggregate level, and run ad hoc reports, scheduled reports, and template reports on the health of the Document Control System. People want to be apprised of where overdue documents so they can take steps to fix them. Reporting provides this visibility.

8. Intuitive Filtering and Data Security: Within any system, the ability to ensure secure data and documents is critical. An organization wants to make sure that appropriate levels can access, approve, review and make necessary revisions to the document. A good Document Control System will have the security in place that will allow the organization to filter each document to appropriate security levels. In multisite, centralized systems, filtering and securing data often becomes a concern. An effective Document Control System lets an organization limit data visibility to only what is necessary to the user. Depending on the access level of the user, the visibility of documents will change. This ensures that an organization can operate in their Document Control System safely and securely.

Summary

The Document Control System is major information hub for the Quality system and sets the foundation for doing business in a compliance context. It sets the policies, the practices and the enforceable regulations that drive the company’s Quality and EHS initiatives. A good Document Control System will intelligently automate the review and approval process. It will link documents and records so that information is easily transferred, and will foster a platform for intelligent business rules and change management. It allows the integration of Document Control with the Change Management System to simplify change requests and allow single revisions; with Employee Training to efficiently train employees on new documents; and with Deviations to ensure that employees are aware of any planned deviations and these are tracked to completion. The eight traits of an effective Document Control System, combined with the overreaching benefits of the quality system, provide a holistic system for managing documents and extending to the other crucial areas of the enterprise. The QMS is the guide to making sure this is done as easily and effectively as possible.

The above article has been adapted from a white paper by EtQ, Inc.