Tag Archives: Focus Article

magnifying glass

Top 10 Food Safety Articles of 2019

By Food Safety Tech Staff
No Comments
magnifying glass

#10

Lessons Learned from Intentional Adulteration Vulnerability Assessments (Part I)

#9

Lead in Spices

#8

Three Practices for Supply Chain Management in the Food Industry

#7

Changes in the Food Safety Industry: Face Them or Ignore Them?

#6

How Technology is Elevating Food Safety Practices & Protocols

#5

Five Tips to Add Food Fraud Prevention To Your Food Defense Program

#4

2019 Food Safety and Transparency Trends

#3

Sustainability Strategies for the Food Industry

#2

Is Food-Grade always Food-Safe?

#1

E. Coli Update: FDA Advises Consumers to Avoid All Romaine Lettuce Harvested in Salinas, California

Paperstack

Taking Your Operations Digital? Bring in the Stakeholders Early

By Maria Fontanazza
No Comments
Paperstack

Going digital is a hot topic in the food industry, but making the investment can be a tough choice for organizations. Jeremy Schneider, business development director, food safety and quality assurance at Controlant, reviews some of the factors that food companies should consider when making the decision, along with the value that digital technologies can bring from the perspective of ROI and improving food safety culture.

Food Safety Tech: For businesses that have been historically paper-driven, where do they start on the technology adoption journey?

Jeremy Schneider, Controlant
Jeremy Schneider, business development director, food safety and quality assurance at Controlant

Schneider: There are a number of questions that firms, both small and large, should consider when deciding to move to a paperless operation. Have you considered what moving away from a paper-based system would mean for your enterprise? What are the perceived challenges to making this move? Or perhaps, what are the risks of not moving to digital? How would utilizing systems provide your organization with the ability to access data in transformative ways?

For organizations that are making the transition from paper documentation to digital, it is critical to develop a roadmap with tangible milestones and objectives. Although there are a variety of reasons to make the switch to digital, what is most important for your organization will determine what those are, as they will play a critical role in developing a roadmap of priorities. We often find that organizations identify a ‘’pain-point’’ in their current process, and this is a leading driver to wanting to make a change in their process. Perhaps this is the inability to easily access information in a timely manner, or the challenges with making sense of the data that you are currently collecting. Whatever your challenges may be, begin by developing a plan, and prioritize this, as it will provide you with early positive results that will keep you working towards the goal. As you experience these early benefits from going digital, you will begin to see the value that this will bring your organization at scale.

One significant issue that many organizations face when beginning this journey is not bringing the appropriate stakeholders into a program early enough. It is critical for the success of new supply chain programs to make sure you bring in members of purchasing, logistics, quality, finance, IT, and others as early as possible so that any questions or concerns are properly vetted early in the process. In addition to this, getting buy-in from these teams at the earliest phase of a project will allow others to vet the system in their own way, potentially helping them solve challenges they have been

FST: Talk about measuring the success of a technology: How do the metrics translate into ROI?

Schneider: A question that is often raised is how to measure the success of the technology. Simply put, does the program make your life easier and solve the problem you set out to, or not? Does it meet the concise objectives that you outlined in the beginning of the process, or does it fall short in some way? If your answer to any of these questions is yes, and it does meet the objectives, then you are well on your way to defining success of your program.

Read Food Safety Tech’s previous discussion with Schneider, Using Technology for Traceability Adds Dimension to Supply Chain, Promises ROIIt is critical that programs are able to show their value through their return on investment, but how do you measure this? If you have recently implemented a real-time supply chain temperature monitoring program, for instance, you may want to consider metrics such as reduced loss, spoilage, shortages, or restaurant-level outages as metrics of success. Or perhaps you would want to translate this into a dollar figure. For instance, in the previous year, your organization counted 10 rejected shipments due to suspected temperature abuse, at a loss of $500,000. In the year following your implementation, your new system was able to help the organization intervene and minimize that loss to just one rejected shipment at a cost of $50,000, thus leading to a reduced loss rate of $450,000.

In collaboration with other stakeholders in your organization, you may be able to identify additional metrics, such as reduced freight rates from optimized shipping lanes, reduced insurance premiums from reduced losses, or reduced quantities of on-hand inventories as you are able to truly manage a just-in-time supply chain. If your organization actively measures your Cost to Serve, savings within your supply chain would likely be an important data point to consider.
Beyond the identifiable money savings, consider some of the soft ROI attributes, such as enhanced collaboration with supply chain and supplier partners, improved customer loyalty, brand protection generally, and sustainability initiatives. Does your organization have goals to reduce food waste? If so, perhaps waste minimization is an important attribute to measure. When evaluated holistically, significant savings can be realized.

FST: How does technology facilitate a more effective food safety culture?

Schneider: Building an effective food safety culture is a process that requires commitment from every level of your organization. The ways that we promote food safety culture within each organization differs, from rewarding team members when they identify an unsafe practice, to actively promoting food safety throughout the organization, to encouraging quality assurance teams to identify state-of-the-art technologies and implementing them to improve the systems, programs, and processes throughout the company.

As food safety professionals, our toolboxes are filled with a variety of tools for the job, and technology as a tool is no exception. Technology should enable our organizations to be more efficient, allowing them to focus their attention on high-priority projects while minimizing work that can be automated. An example of this is setting parameters to allow organizations to work based on exception instead of requiring a review of all documentation.

As we enter the New Era of Smarter Food Safety, and the tenants of it being people-led, technology-enabled, and FSMA-based, we have a mandate to try new technologies to help solve previously unsolvable supply chain challenges. Organizations are actively pursuing real-time supply chain temperature monitoring as a way to provide insights into their cold chain and allowing them to move from reaction to a position of prevention.

Organizations are finding that investments in food safety technologies pay dividends in customer commitment over the long term. It is no longer acceptable to only meet regulatory standards. It is now an expectation that companies do anything possible within their power to assure customer safety and, per the FDA’s new mandate, to help create a more digital, traceable, and safer food system.

Susanne Kuehne, Decernis
Food Fraud Quick Bites

Another Seafood Fraud: The Cephalopod Edition

By Susanne Kuehne
No Comments
Susanne Kuehne, Decernis
Squid, Portugal
Find records of fraud such as those discussed in this column and more in the Food Fraud Database.
Image credit: Susanne Kuehne.

For more than three years, more than 100,000 pounds of giant squid from Peru was imported into the United States by a father-son duo who owned two Long Island food processing and distribution companies, and then marketed the squid as the more expensive octopus. The mislabeled seafood was worth over $1 million, and 10 grocery stores were defrauded during this time period. This kind of fraud carries steep fines and a possible five-year prison sentence.

Resource

  1. The United States Department of Justice (November 25, 2019). “New York Food Processing and Distribution Companies and Owners Plead Guilty to Seafood Sales Fraud”. Retrieved from Department of Justice, Office of Public Affairs, Press Release Number 19-1307.

 

Production line, NiceLabel

Farm-to-Fork Transparency: How Digitized Labeling Can Prevent a Major Allergen Recall

By Lee Patty
No Comments
Production line, NiceLabel

For consumers and brands alike, the damaging impact of mislabeling or neglecting to clearly outline an allergen can be colossal. Therefore, to prevent a health and business disaster, best practices around allergen labeling must be top of mind. Luckily, technology can help, and the farm-to-fork transparency provided by a centralized and digitized modern label management system can ensure organizations improve responsiveness and accuracy while reducing costs beyond those saved by mitigating recalls.

No one wants to face a recall, but have you done enough to prevent one from happening to you? More than 650 food products were recalled last year in the United States alone. And one of the leading causes might just be the easiest to prevent: Undeclared allergens.

According to the Q2 2019 Stericycle Recall Index, undeclared allergens are the leading cause of U.S. food recalls, accounting for 48.4% of food recalls from the FDA and 62.9% of food pounds recalled by the USDA. This statistic becomes more alarming considering that roughly 11% of US adults have a food allergy, according to JAMA.

Enacted in 2004, the Food Allergen Labeling and Consumer Protection Act (FALCPA) stipulates that all packaged food regulated under the Federal Food Drug and Cosmetic Act (FFD&C) comply by listing major food allergens. “Major allergens” refers to milk, eggs, fish, shellfish, tree nuts, peanuts, wheat, and soybeans, and for nuts and shellfish, the species must be declared.

For brands, the damaging impact of mislabeling or neglecting to clearly outline an allergen can be colossal, resulting in costly recalls or litigation. However, the impact to consumers can be even greater when one small mistake can cause serious illness, or worse, death. To prevent a health and business nightmare, best practices around allergen labeling must be top of mind.

However, with constantly changing legislation, this can be easier said than done. For instance, in a move that outpaced the FDA, Illinois issued a state law requiring sesame labeling. And in the UK, Natasha’s Law was recently introduced, requiring companies to label all food ingredients on fresh pre-packaged food after 15-year-old Natasha Ednan-Laperouse died of a sesame allergy from a sandwich that didn’t list all the ingredients.

The need for optimal allergen labeling is clear, so how can organizations ensure allergens are clearly labeled on their products and meet existing standards while preparing for future requirements?

Though the underlying principle behind a clear label is simple, the process of designing such labels can be multifaceted and difficult to streamline—especially if labels are designed, printed and managed by separate users across a franchise or store network. And this challenge is multiplied further when products reach across international boundaries. But technology can help, and the farm-to-fork transparency provided by a centralized and digitized modern label management system can ensure organizations improve responsiveness and accuracy while reducing costs beyond those saved by mitigating recalls.

Disorganized Sprawl: A Major Hurdle to Effective Labeling

When implemented properly, modern label management can cost-effectively centralize labeling, reducing inefficiencies and human error. However, before this can happen, there are a few common roadblocks that may make standardizing the labeling process challenging.

One issue may be a sprawl of legacy equipment that is not integrated into a cohesive network. For instance, a legacy labeling system may only support certain label printers while certain manufacturers of direct marking equipment may only support their own propriety brand of printers. In another sense, a lack of standardization can also make it difficult to efficiently integrate labeling with other business solutions like manufacturing execution systems (MES) and enterprise resource planning (ERP) systems.

A damaging impact of sprawl is adoption of a wide range of different labeling applications across various facilities. This will result in inconsistent label formatting, the need to create the same label multiple times, and the need to accommodate different systems and printers. Consequences of this may be a lack of centralized storage when everything is saved locally, complex user training encompassing many software programs, an increased burden on IT, and a great deal of extra administration and human intervention to maintain and update labels.

Another problem with a disorganized ecosystem for labeling is that quality assurance inevitably suffers because tracing a label’s history or implementing standardized approval processes can be difficult or impossible. To accurately track labeling, it’s necessary to have a production log stating where and when labels were produced and who produced them. Having such a log and using it effectively requires centralization or else it can become difficult to track different versions or enforce universal approval processes for altering templates.

Implementing Modernized Labeling to Improve QA

Modern label management systems can help suppliers and manufacturers standardize and control marking packaging or label production across an entire organizational ecosystem. These solutions feature a central, web-based document management system and provide a reliable storage space for label templates and label history. This will enable changes and updates to be tracked centrally, so local facilities can access uniform and accurate templates to produce labels.

An ideal label management system can also interface with a multitude of direct marking and labeling printers, even if they are from different manufacturers, and it can integrate labeling and direct marking with a business system’s master data, which eliminates manual data entry errors. This decreases upfront capital expenditures in more costly efforts to standardize equipment, provides a system that is easy to integrate with partners, saves costs generated from having to discard product or rework labels, and increases a company’s ability to implement unified, organization-wide labeling processes.

Centralized Labeling is Easily Delivered Through Cloud

To many, the thought of migrating legacy labeling to a centralized system or investing a large sum of resources into centralizing labeling may seem inordinate or daunting. However, cloud technology makes migrating to a modern label management system feasible for organizations of all sizes.

With the cloud, designing labels and ensuring quality assurance becomes far more accessible. Additionally, the software-as-a-service (SaaS) model doesn’t require the capital investments or operations and maintenance upkeep associated with costly IT infrastructure and is easily scalable depending on business needs. This is a game changer for small to medium sized businesses who can now benefit from a centralized labeling system because of the cloud.

The Benefits of a “Single-source-of-truth”

In addition to other benefits, integrating a modern label management solution with other business systems allows users to access a “single-source-of-truth.” This allows for enforceable, specific user roles with logins for each user as well as traceability and transparency across all factories that produce products. The traceability from being able to monitor a “single-source-of-truth” is a critical component to farm-to-fork transparency because it can provide an accurate production log overviewing label versions and changes, so companies can pinpoint the locations and causes of labeling inaccuracies and fix them instantly.

A modern label management system also enables organizations to nimbly respond to new regulatory requirements because alterations only need to be made in one location, new templates can be previewed before going to production, and nutrition and allergen functionality can be easily formatted so that it is clear and stands out to the consumer. This increases labeling consistency and accuracy, and saves time when rules change and when new products need to be incorporated during a merger or acquisition.

Futureproofing and Ensuring Consumer Safety with Allergen Labeling

In today’s world, food and beverage manufacturers must rise to the challenge of changing regulations while meeting the call of shifting customer demands and integrating themselves within greater business ecosystems and extended supply chains. In the case of allergen labeling, this may mean preparing labels for different countries, which have varying standards for labeling allergens like sesame, royal jelly, bee pollen, buckwheat and latex, or ensuring labels can be altered quickly when new products are rolled out or when bodies like the FDA revamp standards.

Companies that implement modern label management solutions position themselves to adapt to competition and regulations quickly, implement solutions that can easily be integrated with partners in a supply chain, and streamline quality control. This can help improve productivity, reduce labeling errors, increase collaboration, and prevent product recalls. But most importantly, it helps ensure the safety of consumers everywhere.

Salami, plastic packaging

Using Raman Spectroscopy to Evaluate Laminated Food Packaging Films

By Ellen Link, Gary Johnson, Ph.D.
No Comments
Salami, plastic packaging

Laminated plastics are common and popular food packaging options. They are strong and flexible, making them ideal for both packing and presentation, and can be used for cooking, frozen foods, drink pouches, snack products and even pet food. Yet, unreliable plastics can create a problem for food packaging and the safety of a product.

If a grade of plastic is not what was promised or needed, there can be issues that lead to spoilage, spills and messes, crystallization, mold or other risks. Additionally, there may be concerns about how laminated films will interact with the product itself, as it could impact food safety or lifecycle. For these reasons, it is critical to have accurate information when evaluating the plastics films used in food packaging.

Raman Spectroscopy

Raman spectroscopy (RS) is a powerful method of identifying and characterizing chemical compounds based on light scattering by a sample. It can be used to identify layers in food packaging films to accurately understand the chemical makeup of the laminated plastic. The effect is named for its inventor, C.V. Raman, who was awarded the Nobel prize in physics for its discovery in 1930. It is a non-destructive method that uses an induced-dipole mechanism to probe the vibrations of the chemical bonds in a molecule. The Raman spectrum shows a pattern of molecular vibrations that represents a detailed chemical fingerprint of a material, providing insights into the product composition.

A Raman spectrum is obtained by illuminating the sample with a laser and collecting and measuring the scattered light with a spectrometer. The molecular vibrational modes vary depending on the geometry and electronic structure of the chemical compound present in the sample. By controlling the position of the laser focus point on a sample, a map of the composition can be created. This provides valuable information on the plastic film related to its composition, such as number of layers, thickness of each layer and overall make-up.

In the food packaging and safety industry, this technique can be used to evaluate laminated plastic films by examining polymers, minerals, and/or inorganic fillers and pigments present in the film. Specific food packaging products that can benefit from RS assessments include heat seals, containers, lids, films and wrappers both for durability and performance and for diffusion, permeation or other concerns.

Benefits and Limitations

There are numerous benefits to using the RS method. A major advantage is that there is virtually no sample preparation necessary; spectra can be obtained without direct contact, such as through the sides of glass vials or through windows in reaction cells. As a non-destructive technique, it allows an easy, highly accurate way to take a sample, create a chemical composition map and better understand films’ barrier properties, structural integrity and layers. It has broad applicability and works using conventional microscope optics.

There are, of course, limitations to the approach, as well. Fluorescent components or impurities in a sample can emit a photoluminescent background that overwhelms the Raman scattering. Samples can also be damaged by the laser if too much power is used, or the sample absorbs light at the laser wavelength. Samples that do fluoresce and samples that are photolabile act as common interferences for the RS method. In many cases, these interferences can be overcome with the proper choice of laser and sampling techniques. Additionally, while RS provides an accurate analysis of laminated films, the technique cannot be used on metals or metallic compounds (which can be assessed using scanning electron microscopy or light optical microscopy) or organic pigments or ink layers (which can be assessed with other infrared techniques).

Using RS for Food Packaging

RS can offer a variety of insights for food packaging films:

  • Failure analysis. If a plastic used for a heat seal in a fruit or yogurt cup fails, it could result in a mess for manufacturers, stores or the consumer. Exposure to air or elements could also lead to spoilage, particularly for refrigerated foods. Inconsistent plastic packaging could result in weak points that break, crack or puncture, which could also result in mold, mess or other spoilage concerns. If a manufacturer experiences a failure in a heat seal or packaging leading to leakage or spoilage, RS analysis can help determine why the failure occurred (was in the plastic film or something else) to help prevent future issues.
  • Supply chain validation. It is extremely important that the plastic films coming from suppliers are what they are promising and what the manufacturer needs. RS analysis can be used to determine the chemical make-up and morphology of packaging to confirm a supplier’s claims before proceeding with use of the film in food packaging and products.
  • Simple decision making. If a manufacturer is trying to decide which material to use, RS can provide answers. For example, if there is a need for moisture non-permeating films and there are multiple options available, an RS chemical map can illustrate what to expect with each option, aiding in the decision-making process when combined with other known factors such as cost or timing. If there is an additive in the food product that may diffuse into the film, RS can determine which material might best resist the potential problem.
  • Packaging appearance. If there is a swirl or haze in the packaging, RS can compare the area with the issue to a clear section to determine if the defect in the film is a foreign polymer or an inorganic pigment or filler, identifying the source of the problem.

RS analysis provides a wealth of information in a manner that is non-destructive. Giving a chemical fingerprint to identify composition with extremely good spatial resolution gives manufacturers valuable information that can be used to mitigate issues, correct problems or make important decisions. These actions in turn can help ensure food safety, which builds brand image and manufacturer equity. Ultimately, RS analysis can play an important role in the success of a product, a brand or a company.

Susanne Kuehne, Decernis
Food Fraud Quick Bites

Sweet Things, Adulterated

By Susanne Kuehne
No Comments
Susanne Kuehne, Decernis
Food fraud, lavendar, honey
Find records of fraud such as those discussed in this column and more in the Food Fraud Database.
Image credit: Susanne Kuehne.

Honey is a popular item for adulteration, and honey with a specific botanical source is seen as a more valuable product. The Czech Agriculture and Food Inspection Authority took samples of organic Spanish lavender honey in a Czech supermarket, and analyzed the pollen. The analysis showed that the honey was from alternative botanical sources and certainly not lavender.

Resources

  1. Czech Agriculture and Food Inspection Authority (May 2, 2019). “Med z mořské levandule BIO tekutý”.

 

Lessons Learned from Intentional Adulteration Vulnerability Assessments (Part II)

By Frank Pisciotta, Spence Lane
No Comments

Food defense is the effort to protect food from intentional acts of adulteration where there is an intent to cause harm. Like counterterrorism laws for many industries, the IA rule, which established a compliance framework for regulated facilities, requires that these facilities prepare a security plan—in this case, a food defense plan—and conduct a vulnerability assessment (VA) to identify significant vulnerabilities that, if exploited, might cause widescale harm to public health, as defined by the FDA. Lessons learned during the conduct of food defense vulnerability and risk assessments and the preparation of the required food defense plan are detailed throughout this three-part series of articles. Part I of this series addressed the importance of a physical security expert, insider threat detection programs, actionable process steps (APS) and varying approaches to a VA. To further assist facilities with reviewing old or conducting new VAs, Part II will touch on access, subject matter experts, mitigation strategies and community drinking water through more lessons learned from assessments conducted for the largest and most complex global food and beverage facilities.

Lesson 6: Utilization of Card Access. The FDA costs of implementing electronic access control, as reported in the Regulatory Impact Analysis document (page 25) are shown in Table 1.

Average Cost Per Covered Facility Initial Recurring Total Annualized
Prohibit after hours key drop deliveries of raw materials $ $1070 $1070
Electronic access controls for employees $1122 $82 $242
Secured storage of finished products $1999 $– $285
Secured storage of raw materials $3571 $– $508
Cameras with video recording in storage rooms $3144 $– $448
Peer monitoring of access to exposed product (not used) $47 $1122 $1129
Physical inspection of cleaned equipment $– $303 $22
Prohibit staff from bringing personal equipment $157 $– $22
Total $9993 $1455 $2878
Table I. Costs of Mitigation

In our opinion, these costs may be underreported by a factor of five or more. A more realistic number for implementing access control at an opening is $5,000 or more depending on whether the wire needs to be run in conduit, which it typically would. While there are wireless devices available, food and beverage organizations should be mindful that the use of wireless devices may in some cases result in the loss of up to 50% of electronic access control benefits. This happens because doors using this approach may not result in monitored-for-alarm conditions, such as when doors are held open too long or are forced open. Some wireless devices may be able to report these conditions, but not always as reliable as hardwired solutions. Using electronic access control without the door position monitoring capability is a mistake. From a cost standpoint, even a wireless access control device would likely be upwards of $2,000 per opening.

Lesson 7: In the interest of time, and in facilities with more complex processes (which increases the work associated with the VA), plan to have quality, food safety and physical security personnel present for the duration of the VA. But also bring in operational specialists to assess each point, step or procedure for the respective operational areas. You may wish to have a quick high-level briefing for each operational group when it’s their turn to deliberate on their portion of the manufacturing operation. Proper planning can get a hybrid style VA done in one-and-a-half to three days maximum for the most complex of operations.

Lesson 8: Conduct a thorough site tour during the assessment process; do not limit your vulnerability activity to a conference room. Both internal and external tours are important in the assessment process by all members of the team. The external tour is needed to evaluate existing measures and identify vulnerabilities by answering questions such as:

  • Is the perimeter maintained?
  • Are cameras pointed correctly?
  • Are doors secure?
  • Are vehicles screened?
  • Are guards and guard tours effective?
  • Internal tours are important to validate documented HACCP points, steps or procedures.A tour also helps to validate process steps that are in multiple parts and may need to be further assessed as a KAT, for public health impact, accessibility and feasibility or to identify issues that have become “invisible” to site employees which might serve a security purpose.
  • Properly conducted tours measure the effectiveness of a variety of potential internal controls such as:
    • Access control
    • Visitor controls
    • Use of identification measures
    • Use of GMP as a security measure (different colors, access to GMP equipment and clean rooms)
    • Effectiveness of buddy systems
    • Employee presence

Lesson 9: Do not forget the use of community drinking water in your processes. This is an easy way to introduce a variety of contaminants either in areas where water is being treated on site (even boiler rooms) or where water may sit in a bulk liquid tank with accessibility through ladders and ports. In our experience, water is listed on about half of the HACCP flow charts we assessed in the VA process.

Lesson 10: Some mitigation strategies may exist but may not be worth taking credit for in your food defense plan. Due to the record keeping requirements being modeled after HACCP, monitoring, corrective action and verification records are required for each mitigation strategy associated with an APS. This can often create more work than it is worth or result in a requirement to create a new form or record. Appropriate mitigation strategies should always be included in your food defense plan, but sometimes it produces diminishing returns if VA facilitators try to get too creative with mitigation strategies. Also, it is usually better to be able to modify an existing process or form than having to create a new one.

Lesson 11: In cases of multi-site assessments, teams at one plant may reach a different conclusion than another plant on whether an identical point, set or procedure is an APS. This is not necessarily a problem, as there may be different inherent conditions from one site to the next. However, we strongly suggest that there be a final overall review from a quality control standpoint to analyze such inconsistencies adjudicate accordingly where there is no basis for varying conclusions.

Lesson 12: If there is no person formally responsible for physical security at your site, you may have a potential gap in a critical subject matter area. Physical security measures will make at least a partial contribution to food defense. Over 30 years, we have seen many organizations deploy electronic access control, video surveillance and lock and key control systems ineffectively, which provides a false sense of security and results in unidentified vulnerability. It is as important to select the right physical security measures to deploy, but also critical to administer them in a manner that meets the intended outcome. Most companies do not have the luxury of a full-time security professional, but someone at the plant needs to be provided with a basic level of competency in physical security to optimize your food defense posture. We have developed several online training modules that can help someone who is new to security on key food defense processes and security system administration.

Lesson 13: As companies move into ongoing implementation and execution of the mitigation strategies, it is important to check that your mitigation strategies are working correctly. You will be required to have a monitoring component, correction action and verification intended for compliance assurance. However, one of the most effective programs we recommend for our clients’ food defense and physical security programs is the penetration test. The penetration test is intended to achieve continuous improvement when the program is regularly challenged. The Safe Quality Food (SQF) Institute may agree with this and now requires facilities that are SQF certified to challenge their food defense plan at least once annually. We believe that frequency should be higher. Simple challenge tests can be conducted in 10 minutes or less and provide substantial insight into whether your mitigation strategies are properly working or whether they represent food defense theater. For instance, if a stranger were sent through the plant, how long would it take for employees to recognize and either challenge or report the condition? Another test might include placing a sanitation chemical in the production area at the wrong time. Would employees recognize, remove and investigate that situation? Challenge tests are easy high impact activities; and regardless of the outcome, can be used to raise awareness and reinforce positive behaviors.

Whether training a new security officer, reviewing existing security plans or preparing for an upcoming vulnerability assessment (due July 26, 2020), these lessons learned from experienced security consultants should help to focus efforts and eliminate unnecessary steps at your facility. The final installment in this series will address broad mitigation strategies, the “Three Element” approach and food defense plan unification. Read the final installment of this series on Lessons Learned from Intentional Adulteration Vulnerability Assessments, Part III.

Nuts, tree nuts

Q3 Hazard Beat: Nuts, Nut Products and Seeds

By Food Safety Tech Staff
No Comments
Nuts, tree nuts

The following infographic is a snapshot of the hazard trends in nuts, nut products and seeds from Q3 2019. The information has been pulled from the HorizonScan quarterly report, which summarizes recent global adulteration trends using data gathered from more than 120 reliable sources worldwide. For the past several weeks, Food Safety Tech has provided readers with hazard trends from various food categories included in this report. This week’s hazard snapshot concludes the series.

Nut hazards, HorizonScan
2019 Data from HorizonScan by FeraScience, Ltd.

View last week’s hazards in Milk & Dairy Products.

Susanne Kuehne, Decernis
Food Fraud Quick Bites

Things Are Smelling Fishy Yet Again

By Susanne Kuehne
No Comments
Susanne Kuehne, Decernis
Food Fraud, Decernis
Find records of fraud such as those discussed in this column and more in the Food Fraud Database. Image credit: Susanne Kuehne.

The nose knows: In case fish smells “fishy”, it is no longer fit for human consumption. A Canadian fish importing company pleaded guilty to the import of 9,000 pounds of rotten and partially decomposed fish into the United States. The potentially adulterated fish was sampled by the FDA, who declared it to be too spoiled to be sold in the country, hence refused its entry into the United States—but the fish was imported via a wrong shipment declaration anyway. The crime of importing refused food carries a prison sentence of up to a year.

Resource

  1. Department of Justice, The United States Attorney’s Office, Western District of Washington (October 18, 2019). “Canadian seafood wholesaler, and owner, plead guilty to illegally importing fish into U.S.
Colleen Costello, VitalVio
FST Soapbox

Prevention Takes Center Stage to Address Food Recalls

By Colleen Costello
No Comments
Colleen Costello, VitalVio

In the complex food supply chain, a single product travels a long journey before reaching consumers’ plates. It’s no wonder that it has become so difficult to control the quality and safety of food. As food moves from trucks to conveyor belts and through grocery store shelves and shopping carts, the risk for harmful bacteria to contaminate products rises immensely. What’s worse is pinpointing the source of contamination can be nearly impossible, leaving food manufacturers scrambling to “fix” the error without even knowing the cause.

In recent recalls, processing plants completely shut down operations in an effort to resolve the issue and thoroughly sanitize their entire facilities. While this is good news for consumers, this type of reactive response will undoubtedly have a long-term, irreversible impact on the business—both financially and potentially for the brand’s reputation. Consumers remember the name of the company they heard on the evening news that had to pull thousands of pounds of products from shelves in their city or region. Then, when they make their weekly trip to the grocery store, they likely make sure to avoid that company’s products in fear of potential quality issues that could make them and their families sick. It’s a deadly cycle for consumers and public health, as well as business livelihood.

Product and consumer safety must continue to be the top priority for the food industry. The success of these companies literally depends on it. With so much on the line, the food industry must come together to spark a shift in how they operate to prevent food recalls rather than having to respond to them.

Stopping Recalls to Save Lives and Businesses

To move in the direction of mitigating pathogens from ever coming into contact with food and therefore preventing recalls altogether, processors must develop and deploy new strategies that keep facilities consistently clean. The U.S. government is stepping in with regulations such as FSMA that urge companies to shift from reactively responding to safety issues, to proactively working to prevent them. This is the fundamental shift that is needed across the food supply chain in order to protect consumers and food producing businesses.

Important new technologies have emerged in recent years that can add new layers of meaningful protection to continuously combat contamination across the supply chain. When coupled with existing disinfection and cleaning practices, these new technologies can help mitigate the introduction of harmful pathogens as food moves from point A to point B, with all the stops made in between.

One example is the advent of a new class of technology that incorporates antimicrobial LED lighting, which enables food processors to take an “always on” approach to keeping surfaces free of harmful pathogens. Since these lights meet international standards for unrestricted and continuous use around people, they’re able to irradiate large places and the smallest of spaces, all while workers are present.

However, simply deploying these new technologies isn’t enough. For new prevention strategies to be truly successful, food processors should consider the bigger picture. A large percentage of food processors focus primarily on bolstering their sanitation approaches in the areas that have the highest likelihood of coming into contact with food products. This is logical, as Zone 1 and Zone 2 are typically the highest risk for contracting and spreading harmful pathogens.

Environmental Safety Zones
Environmental safety zones. Figure courtesy of Vital Vio.

However, processors are leaving holes in their sanitation strategies by not taking measures to keep areas, such as Zone 3 and Zone 4, also well protected. To ensure food remains free of contaminants, plant managers must ensure the entire environment is fully protected, including the belts and vessels that the food touches, as well as the break rooms where employees rest and offices where management holds meetings. If these areas aren’t kept equally as clean, facilities are risking outside contaminants to enter Zone 1 that can ultimately compromise their food products.

Food recalls have become eerily common, putting a strain on public health and businesses. To stop what seems to be rising to crisis level, all companies involved in the food supply chain need to take a proactive stance toward prevention. This means deploying advanced technologies that continuously prevent harmful pathogens from taking root anywhere in their facilities. Simple yet thoughtful solutions, such as antimicrobial LED lighting, ensure food companies are one step closer to keeping all of us and their businesses safe.