Tag Archives: ingredients

Susanne Kuehne, Decernis
Food Fraud Quick Bites

It Is Natural, So It Is Good For You – Or Not?

By Susanne Kuehne
No Comments
Susanne Kuehne, Decernis
Pills, food fraud
Find records of fraud such as those discussed in this column and more in the Food Fraud Database. Image credit: Susanne Kuehne.

In a large study of nearly 6000 products, more than a quarter (27%) of herbal medicines and foods sold in 37 countries on six continents was found to be deliberately or accidentally adulterated. In this study, the products, which came in a variety of forms such as softgels, tea and more, were analyzed with high throughput DNA sequencing and showed mislabeling, added fillers, substituted ingredients or contaminants. Such fraud can be a harmful to consumer health and safety, and must be monitored and tracked closely.

Resource

  1. Ichim, M.C. (October 24, 2019). “The DNA-Based Authentication of Commercial Herbal Products Reveals Their Globally Widespread Adulteration”. “Stejarul” Research Centre for Biological Sciences, National Institute of Research and Development for Biological Sciences, Piatra Neamt, Romania. Frontiers in Pharmacology. Retrieved from https://www.frontiersin.org/articles/10.3389/fphar.2019.01227/full.
magnifying glass

Food Fraud and Adulteration Detection Using FTIR Spectroscopy

By Ryan Smith, Ph.D.
No Comments
magnifying glass

Producers of food-based products are faced with challenges of maintaining the safety and quality of their products, while also managing rapid screening of raw materials and ingredients. Failure to adequately address both challenges can be costly, with estimated recall costs alone starting around $10 million, in addition to any litigation costs.1 Long-term costs can accumulate further as a result of damage to brand reputation. A vast array of methods has been employed to meet these challenges, and adoption continues to increase as technology becomes smaller, cheaper and more user friendly. One such technique is Fourier transform infrared (FTIR) spectroscopy, an analytical technique that is widely used for quick (typically 20–60 seconds per measurement) and non-destructive testing of both man-made and natural materials in food products. The uniformity and physical state of the sample (solid vs. liquid) will dictate the specifics of the hardware used to perform such analyses, and the algorithm applied to the identification task will depend, in part, on the expected variability of the ingredient.

Infrared spectral measurements provide a “compositional snapshot”— capturing information related to the chemical bonds present in the material. Figure 1 shows an example of a mid-infrared spectrum of peppermint oil. Typically, the position of a peak along the x-axis (wavenumber) is indicative of the type of chemical bond, while the peak height is related either to the identity of the material, or to the concentration of the material in a mixture. In the case of peppermint oil, a complex set of spectral peaks is observed due to multiple individual naturally occurring molecular species in the oil.

Mid-infrared spectrum, peppermint oil
Figure 1. Mid-infrared spectrum of peppermint oil. The spectrum represents a “chemical snapshot” of the oil, as different peaks are produced as a result of different chemical bonds in the oil.

Once the infrared spectrum of an ingredient is measured, it is then compared to a reference set of known good ingredients. It is important that the reference spectrum or spectra are measured with ingredients or materials that are known to be good (or pure)—otherwise the measurements will only represent lot-to-lot variation. The comparative analysis can assist lab personnel in gaining valuable information—such as whether the correct ingredient was received, whether the ingredient was adulterated or replaced for dishonest gain, or whether the product is of acceptable quality for use. The use of comparative algorithms for ingredient identification also decreases subjectivity by reducing the need for visual inspection and interpretation of the measured spectrum.

Correlation is perhaps the most widely used algorithm for material identification with infrared spectroscopy and has been utilized with infrared spectra for identification purposes at least as early as the 1970s.2 When using this approach, the correlation coefficient is calculated between the spectrum of the test sample and each spectrum of the known good set. Calculated values will range from 0, which represents absolutely no match (wrong or unexpected material), to 1, representing a perfect match. These values are typically sorted from highest to lowest, and the material is accepted or rejected based on whether the calculated correlation lies above or below an identified threshold. Due to the one-to-one nature of this comparison, it is best suited to identification of materials that have little or no expected variability. For example, Figure 2 shows an overlay of a mid-infrared spectrum of an ingredient compared to a spectrum of sucrose. The correlation calculated between the two spectra is 0.998, so the incoming ingredient is determined to be sucrose. Figure 3 shows an overlay of the same mid-infrared spectrum of sucrose with a spectrum of citric acid. Notable differences are observed between the two spectra, and a significant change in the correlation is observed, with a coefficient of 0.040 calculated between the two spectra. The citric acid sample would not pass as sucrose with the measurement and algorithm settings used in this example.

Mid-infrared spectrum, sucrose
Figure 2. An overlay of the mid-infrared spectrum of sucrose and a spectrum of a different sample of sucrose.
Mid-infrared spectrium, sucrose, citric acid
Figure 3: An overlay of the mid-infrared spectrum of sucrose and a spectrum of citric acid.

When testing samples with modest or high natural variability, acceptable materials can produce a wider range of infrared spectral features, which result in a correspondingly broad range of calculated correlation values. The spread in correlation values could be of concern as it may lead to modification of algorithm parameters or procedures to “work around” this variation. Resulting compromises can increase the potential for false positives, meaning the incorrect ingredient or adulterated material might be judged as passing. Multivariate algorithms provide a robust means for evaluating ingredient identity for samples with high natural variability.

Click below to continue to page 2.

Spices, Paprika, Curry

Q3 Hazard Beat: Herbs and Spices

By Food Safety Tech Staff
No Comments
Spices, Paprika, Curry

The following infographic is a snapshot of the hazard trends in herbs and spices from Q3 2019. The information has been pulled from the HorizonScan quarterly report, which summarizes recent global adulteration trends using data gathered from more than 120 reliable sources worldwide. Over the next several weeks, Food Safety Tech will provide readers with hazard trends from various food categories included in this report.

Hazards, Herbs, Spices
2019 Data from HorizonScan by FeraScience, Ltd.

View last week’s hazards in meat and meat products.

Sean O'Leary, FoodLogiQ

The Value of a One Percent Improvement

By Food Safety Tech Staff
No Comments
Sean O'Leary, FoodLogiQ

During the past year, the headlines have been filled with stories of foodborne illness, product recalls, and consumers becoming sick from tainted food. In a Q&A with Food Safety Tech, Sean O’Leary, CEO at FoodLogiQ, talks food safety, traceability, and how small percentages can translate into big victories for the food industry and for the people they serve.

Food Safety Tech: From your perspective, what is the current sentiment of consumers with regard to food safety?

Sean O’Leary: Over the last few years, the consumer mindset has changed about food in general. We’ve watched fad diets come and go; however, the interest in healthy ingredients and the concern about where food comes from has graduated from a passing trend to a full shift into the public consciousness. Consumers are much more discerning about what they eat; they also demand to know where their food comes from, how it was produced, and how it got to their table. We are living in the age of transparency, and consumer expectations are high.

And who can blame them? CDC statistics tell us that approximately 48 million people get sick every year from foodborne illnesses—and that’s just in the United States; 128,000 of them end up in the hospital. When a person is admitted to the hospital, it affects more than just that one individual. If the patient is the sole breadwinner of their family, their illness affects the entire family. If the person who gets sick is a child, there can be long-term consequences that trickle down to his or her whole community. And when you consider that 3,000 people die every year from foodborne illness—that’s one 9/11 every year. That’s unacceptable, because this is a preventable issue, and unfortunately, these illnesses are an underreported public health problem.

My challenge to the food industry is simple: What if we made just a 1% improvement in the number of cases of foodborne illness? That seems like such a small percentage, but when you do that math, that’s 480,000 people who don’t get sick this year; 1,280 people who aren’t admitted to the hospital; and 30 people who don’t die. Those are significant numbers.

Sean O'Leary, FoodLogiQ
Sean O’Leary joined FoodLogiQ as CEO in January 2019 with more than 25 years of experience in the technology industry.

FST: To help shed additional light on this subject, FoodLogiQ conducted a national survey to tap into how U.S. consumers feel about issues related to food transparency. What did you learn from those consumer responses?

O’Leary: We polled more than 2,000 people to gauge their sentiment around food traceability and their expectations for food companies regarding foodborne illness and product recalls. The survey also posed questions around consumer preferences regarding their food sources and how they are identified on food labels and menus. The results were enlightening, to say the least.

We learned that a brand or restaurant will pay a high price in terms of customer loyalty if they experience a food recall due to consumer illness. And those customers have some strong opinions regarding how quickly the brand or restaurant should address a food safety issue.

  • 35% of survey respondents told us they would avoid an affected brand or restaurant for a few months, and maybe they would return after the issue had been resolved. Meanwhile, nearly 25% admitted they would never use the brand or visit the restaurant again.
  • Of the respondents who say they care about the quality of the food they eat, 55% say they expect a recall to be executed within 24 to 48 hours.

In reality, it sometimes takes weeks for a product to be pulled from the store or restaurant. This is frequently due to communication issues, since everyone along the supply chain—the grower, supplier, packing and distribution centers, corporate office, and the retailer or restaurant—all must be notified, and a recall plan must be set in motion. Unfortunately, that communication process takes time. When that communication takes place via email or by phone call, the people responsible for pulling product may not have the information they need or may have received misinformation. This can result in lag time, and potentially unsafe product can still get into the hands of consumers.

The faster a food company can address a recall situation and return to business as usual, the faster customers will come back. But comprehensive supply chain transparency is needed to be able to make swift, accurate decisions during this time of crisis. By having a robust end-to-end traceability program and technology that provides real-time data and visibility, companies facing a recall can isolate and surgically withdraw the tainted product out of the supply chain without recalling more items than necessary. That limits the disruption and the waste of good food, which saves the company money.

FST: You recently attended the FDA’s “A New Era of Smarter Food Safety” public meeting in Maryland. What do you think this new campaign will mean for the food industry?

O’Leary: FoodLogiQ was honored to have the opportunity to share our intricate knowledge of the food supply chain, as well as best practices regarding whole chain traceability during this monumental meeting with the FDA with more than 250 food industry leaders.

In retrospect, one thing is clear—we’re in the midst of a pivotal time of change for the world’s food supply chain. In the United States, the food industry remained status quo for decades, but the introduction of FSMA has brought increased scrutiny and accountability; I think it’s made every food company pause and evaluate where they are with regard to food safety, and that’s a good thing. And now, with the launch of the “New Era” campaign, we’re coming together in a collaborative fashion to map out how technology tools, prevention measures, new business models, and an evolving culture of food safety can be merged as a framework for a long term food safety solution. I agree with the FDA; ‘Smarter Food Safety’ is people-led, FSMA-based, and technology-enabled. It will take all of us working together to reach that goal.

Susanne Kuehne, Decernis
Food Fraud Quick Bites

The Hellcat of Pet Food

By Susanne Kuehne
No Comments
Susanne Kuehne, Decernis
Food Fraud, pet food, cat food
Find records of fraud such as those discussed in this column and more in the Food Fraud Database. Image credit: Susanne Kuehne.

Pet food is a highly profitable business. Global pet food sales hit a record $90 billion in 2018, and adulterated or mislabeled feed is not uncommon. In the United States, the FDA ensures correct labeling and adherence to quality standards in pet food. Over the course of six years, a processing facility in Texas shipped low quality, mislabeled ingredients such as feathers and by-products, labeled as premium single ingredients, to pet food manufacturers and distributors. The guilty party had to pay $4.5 millions in restitution to the fraud victims, and the defendant is on a five year probation.

Resources

  1. Department of Justice, U.S. Attorney’s Office, Western District of Missouri (October 24, 2019). “Texas Manager Pleads Guilty to Pet Food Fraud, Company Pays $4.5 Million Restitution”. Retrieved from The United States Department of Justice.
Karen Everstine, Decernis
Food Fraud Quick Bites

Public Food Standards

By Karen Everstine, Ph.D., Steven M. Gendel, Ph.D.
No Comments
Karen Everstine, Decernis

In 1995, a honey processing company was indicted on charges of adulterating industrial honey labeled “USDA Grade A” with corn syrup to increase profits. Ultimately, the jury found in favor of the honey processor, in part because there “weren’t enough regulations governing honey to make the charge stick.”

Honey is defined as “the natural sweet substance produced by honey bees” from the nectar of plants. However, there is not currently an FDA standard of identity for honey in the United States, which would further define and specify the allowed methods of producing, manufacturing and labeling honey (there is, however, a nonbinding guidance document for honey). Some of the details of honey production that a standard of identity might address include allowable timing and levels of supplemental feeding of bees with sugar syrups and the appropriate use of antibiotics for disease treatment.

In circumstances where strict regulatory standards for foods are not available, they may be created by other organizations.

What Is a Food Standard?

A food standard is “a set of criteria that a food must meet if it is to be suitable for human consumption, such as source, composition, appearance, freshness, permissible additives, and maximum bacterial content.”1

To ensure quality, facilitate trade, and reduce fraud, everyone in the supply chain must have a shared expectation of what each food or ingredient should be. Public standards set those expectations and allow them to be shared. They help ensure that stakeholders have a common definition of quality and purity, as well as the test methods and specifications used to demonstrate that quality and purity. Public standards help ensure fair trade, quality and integrity in food supply chains.

How Is a Standard Different from a Method?

A method is generally an analytical technique to assess a particular property of the content or safety of a food or food ingredient. For example, methods for detection of nitrates in meat products or baby food, coliforms in nut products, or high fructose syrups in honey. Methods are an important component of food standards.

A food standard goes a step further and provides an integrated set of components to define a substance and enable verification of that substance. Standards generally include a description of the substance and its function, one or more identification tests and assays (along with acceptance criteria) to appropriately characterize the substance and ensure its quality, a description of possible impurities and limits for those impurities (if applicable), and other information as needed (see Figure 1).

FCC Standard, USP
Figure 1. The Anatomy of an FCC Standard (Source: Food Science Program, Food Chemicals Codex, USP)

Figure 1. The Anatomy of an FCC Standard (Source: Food Science Program, Food Chemicals Codex, USP)

A standard defines both what a food or food ingredient should be and documents how to demonstrate compliance with that definition.

Public Standards and Food Fraud Prevention

Many of the foods prone to fraud are those that are not simple food ingredients, but agricultural products that can be more complex to characterize and identify (such as honey, extra virgin olive oil, spices, etc.). Milk products are an example of a commodity that is prone to fraud with a wide range of adulterants (for example, fluid cow’s milk is associated with 155 adulterants in the Food Fraud Database). Ensuring the quality and purity of a product link milk requires implementation of multiple analytical techniques or the development of non-targeted methods.

The creation of effective public standards with input by a range of stakeholders will be particularly important for ensuring the quality, safety and accurate labeling of these high value commodities in the future.

Reference

  1. A Dictionary of Food and Nutrition 2005, Oxford University Press.

Resources

  1. The Food Chemicals Codex is a source of public standards for foods and food ingredients. It was created by the U.S. FDA and the National Institute of Medicine in 1966 and is currently published by the nonprofit organization USP. The FCC contains 1250 standards for food ingredients, which are developed by expert volunteers and posted for public comment before publication.
  2. The Decernis Food Fraud Database is a continuously updated collection of food fraud records curated specifically to support vulnerability assessments. Information is gathered from global sources and is searchable by ingredient, adulterant, country, and hazard classification. Decernis also partners with standards bodies to provide information about fraudulent adulterants to support standards development.
Laura Nelson, Alchemy

Changing Consumer Preferences and Employee Compliance Training Driving Industry Evolution

By Maria Fontanazza
No Comments
Laura Nelson, Alchemy

The food industry is undergoing considerable change, especially as consumers become increasingly more vocal about their preferences and concerns, and as technology improvement and adoption plays a larger role in the conversation. In a recent Q&A with Food Safety Tech, Laura Dunn Nelson, vice president of food safety at Alchemy, shares her thoughts about current industry trends and how they are impacting food companies, where more help is needed, as well as ways in which companies can help advance food safety culture internally.

Food Safety Tech: The food industry is rapidly evolving. What are some of the trends you’re seeing and are these posing different challenges to food manufacturers?

Laura Dunn Nelson: The food industry is rapidly evolving in three key areas: Who produces our food, the variety of our food, and how consumers access our food.

As consumers continue to shift their food preferences toward an increase in healthy ingredients, locally sourced products, and clean labels, companies in turn continue to innovate and reformulate. Mergers and acquisitions continue as larger companies look to partner with niche companies that are focused on products marketed to the health-conscious consumer. Companies like Impossible Foods and Beyond Meat are expanding rapidly, reaching both vegans and meat eaters in the United States and expanding into international markets. Ever-changing consumer preferences create challenges for the industry to accelerate their research and development processes in order to remain competitive in the marketplace.

Changes in product formulas and increases in product lines create the need for new ingredient procurement, changes in production schedules, and new operating procedures. There has been a proliferation of start-up companies using CBD as an ingredient for food and beverages despite the lagging food safety regulations forcing some city and state regulators like New York City to create their own ban of CBD products. As the FDA explores future regulations, producers and consumers are left to determine the safety of these products.

Home delivery of food continues to be a hot trend as the market continues to grow for companies like UberEats, Grubhub, retailers and foodservice companies like Domino’s Pizza where you can Tweet your pizza order. The home delivery service area presents new considerations for food safety including monitoring appropriate product temperatures.

Finally, discussion around blockchain technology continues to gain prominence as companies work to develop transparency within their supply chain. For many companies, this will translate into a significant shift in technology adoption and a move away from disparate data sources and therefore an investment in not only the technology but in revising their procurement processes.

Laura Nelson, Alchemy
Laura Nelson is vice president of food safety at Alchemy and currently serves as the vice-chair of the Food Safety Culture Professional Development Group (PDG) for IAFP.

FST: What are the areas in which you feel companies need a bit more guidance?

Nelson: How we effectively train our employees to ensure learning and comprehension is paramount to our success in the future. IBM Institute for Business Value recently completed their study “The Enterprise Guide to Closing the Skills Gap,” and noted “120 million workers in the world’s biggest economies may need to be retrained as a result of artificial intelligence (AI) and automation in the workplace.” Reskilling will be the new norm as new technologies and automation of equipment disrupt the current state.

Deloitte noted that “reinventing the way people learn” was the number one trend in the 2019 Global Human Capital Trends Report. Many companies are focused almost exclusively on mandatory compliance training and conducting the training the same way they have for years. Typically, orientation food safety training is provided during the employee’s first week of work and annual refreshers are given every year. In the Global Food Safety Training Survey that Alchemy provides to the global industry with Campden BRI, we consistently find that 67% of responding QA managers report that employees do not follow their food safety programs, despite their food safety training. Unfortunately, the emphasis on food safety is often relegated to that one day a year of refresher training with little reinforcement the remaining 364 days of the year. The ‘noise’ of competing priorities of production and customer expectations often distracts employees from their food safety responsibilities.

Some companies still define training as classroom training when, in fact, employees are being trained each and every day by their supervisors and peers. Companies that put additional emphasis in not only their training but validation of training through observations of employees’ food safety behaviors achieve higher food safety compliance. The power of two-way conversations between the employee and the supervisor as a coach creates an environment of communication and trust.

Alchemy worked with independent researchers to determine the effect of active coaching with prescribed behavior feedback on the plant floor. The results were conclusive: every facility included in the study revealed a 38% improvement in aligned employee behaviors.

Ultimately, companies need to evaluate their current learning organization for effectiveness and focus on job competencies and their ongoing assessment of compliant employee behaviors.

FST: What maturity level are you seeing in the industry related to food safety culture and the related implementation of best practices?

Nelson: The food industry is still relatively new to the concept of a mature food safety culture, and even how to define that. The industry focus of this topic has largely been driven by efforts within the GFSI community, particularly with the publication of the position paper “A Culture of Food Safety.” Pioneers in food safety culture research, like Dr. Lone Jespersen, and emerging training assessment tools are working toward pushing these newer concepts to the mainstream of our industry.

As with many important constructs, the QA/QC team is typically tasked with introducing this concept to their organization, defining their company’s level of food safety culture maturity, and establishing a continuous improvement plan. This is a tough ask from individuals who typically have a technical education background with little experience in behavioral science. To address these challenges, there are a growing number of consultants, books, and resources to help define a company’s food safety culture maturity and establish improvement strategies.

To help frame the benefits of a mature culture, a recent publication by Lone Jespersen et al, “The Impact of Maturing Food Safety Culture and a Pathway to Economic Gain,” notes the value of a mature food safety culture in reducing the cost of poor quality and food safety risks. Research indicates that many companies are currently in mid-maturity of their food safety culture. Suggested best practices to help an organization mature their food safety culture include:

  1. Foster cross-company ownership of food safety.
  2. Move from compliance driven operations to risk reduction through continuous improvement.
  3. Improve engagement skills of technical staff.

The first step is an assessment to understand the company’s unique performance gaps, either through an internal review or an external assessment. Once the specific gaps are identified, companies can develop their food safety culture improvement plan and execute. It’s helpful to conduct a reassessment over time to ensure the established improvement strategies are successful.

The effort can be challenging but research confirms that a more mature food safety culture will deliver improved food safety performance of food safety behaviors, improved product quality, and a reduction in food safety risks.

Emily Kaufman, Emport, Allergens
Allergen Alley

Skip Validation, You’re Asking for Problems

By Emily Kaufman
No Comments
Emily Kaufman, Emport, Allergens

Running an unvalidated program or product is like betting your life’s savings on a horse because you overheard a “surefire tip” outside the racetrack, or driving around without any mirrors.

To put it less dramatically: Skipping validation is asking for problems. But what does validation mean, how much is necessary, and what’s the best way to include it in your plans?

In order to start understanding validation, we must first break it down into two main categories: Product validation and process validation. From there, it’s important to look at whether something has been broadly validated for general use, and whether it has been narrowly validated for use in your specific situation. That last question is where people often struggle: How can we ensure this product or process is validated for use in the way that we plan to use it?

Validating an on-site allergen test kit requires a few different layers of research and testing. Taking the time to carefully design and vet a validation process may seem tedious, and it may require some additional up-front costs—but in the long run, it’s the only way to ensure you are spending your money on a test kit that works. And if you’re using an allergen test kit that doesn’t actually detect allergens in your facility—best-case scenario, you’re wasting money and time. Worst-case scenario, you’re headed straight for a recall and you won’t see it coming until your customers get sick.

If you are buying a test to determine the absence or presence of allergens in your facility (specific or general), you’ll likely ask the kit manufacturer if the test kit has been validated. This validation can come in many forms, most commonly:

  • Third party validation (eg., AOAC)
  • Internally produced validation documents or whitepapers
  • Published studies

A product with more validation (third-party certifications, studies, whitepapers) isn’t necessarily better than a product with less. It may have simply been on the market longer or be produced by a company that allocates its funding differently. However, validation documents can be very comforting when reviewing a product, as they provide a starting point for your own research. When you are reviewing validation data, ask yourself a few questions:

  • Does this data cover products like mine?
    • Are the ingredients similar (raw meat, ice cream, spices, etc.)?
    • Are the preparation processes similar (heat, fermentation, etc.)?
  • Does this data cover an environment like mine?
    • Will the tests be run the same way in my facility as in the data?
    • Is the contamination being introduced in a way and amount that feels realistic to the risk factors I know about in my facility?
  • Does the data mention any complicating factors (and do I need to care about them)?
    • Are there ingredients known to cross-react or cause false negatives?
    • Are there processes known to change the LOD or cause false negatives?
  • If I am aware of limitations with other similar test kits, are those limitations addressed in the data for this test kit as well?

To give an example, let’s imagine you make premium ice cream and are reviewing allergen test kits that look for peanuts and almonds in product, in rinsewater and on surfaces. You’ll want to ask questions like:

  • How does the kit perform in a high-fat environment?
  • Does the validation data cover product, rinsewater and surfaces?
  • Are there ingredients in our facility that are called out as cross-reactive (or otherwise troublesome)?
  • Do our ingredients get exposed to temperatures, pH levels, or other processes that impact the LOD?

You might learn, for example, that one of the matrices tested in validation was ice cream. If so: Wonderful! That’s a vote of confidence and a great starting point. Or maybe you learn that the kit in question isn’t recommended for matrices that include an ingredient in your formulation. If so: That’s equally wonderful! Now you know you need a different solution. Or maybe the instructions on your current peanut test kit indicate that heavily roasted peanuts have a higher detection limit than raw peanuts, but this new test kit only has data for raw peanuts. If so: OK! You have more research to do, and that’s fine too.

In short: Pre-existing product validation data is a helpful starting point for determining whether or not an allergen test kit MIGHT work well in your facility—but it doesn’t eliminate the need for you to run your own internal validation study.

Once you’ve identified an allergen test kit that you want to use in your facility, you’ll want to prove that it can work to identify contamination in your specific environment. This is where a more narrowly tailored validation comes into play. Your test kit provider may have resources available to help you design an internal validation. Don’t be afraid to ask for help! A reputable test kit provider should care not just about making the sale, but also about making your food safer.

Before you even order a new test kit, you should have a good idea of how your validation process is going to work. It’s important to have both the study design and study outcome on file. Here are some possible additions for your internal validation study:

Validating that an allergen test kit can reliably prove your surfaces are clean of said allergen:

  • Test the surface prior to cleaning, after the allergen in question has been run. Do you see positive results? If not, then a negative result after cleaning is essentially meaningless.
  • Test the surface after cleaning. Do you see negative results? If not, it could mean a problem with your cleaning process—or a strange interference. Both require further research.
  • If your products encounter multiple surfaces (eg., stainless steel and also ceramic), test them all with before and after testing.

Validating that an allergen test kit can reliably prove your rinsewater is free of said allergen:

  • Test water from the beginning of the cleaning cycle as well as the end. Do you see a change in results, from positive to negative?
  • If you don’t ever see the allergen present in your rinsewater, you may want to “spike” a sample by adding a small amount of the product that contains the allergen into the rinsewater you’ve collected. Could it be that something in your cleaning protocol or some aspect of your matrix is affecting the detection limit?

Validating that an allergen test kit can reliably prove your ingredients or finished products are free of said allergen:

  • Test a product that you know contains the allergen but is otherwise similar. Keep in mind that some allergen test kits can be overloaded and can show false negatives if too much allergen is present in the sample—if you aren’t sure whether the test kit you are trialing has this limitation, ask your supplier. Do you see a positive?
  • Have you encountered batches of your product with accidental cross-contamination from the allergen in question? If so, and you have some of that batch archived, run a test on it. Would this kit have identified the problem?
  • Do you have a batch or lot of product that has been analyzed by a third-party lab? If so, do your results in-house match the lab’s results?
  • Run—or ask a lab to run—a spiked recovery. This is especially important if there is no pre-existing data on how the test kit works against your specific matrices.
    • Some test kit manufacturers can provide this service for you—you would simply need to send them the product, and they can add various amounts of allergen into the product and confirm that the test kit shows positive results.
    • Some kit manufacturers or other suppliers can send you standards that have known quantities of allergen in them. You can mix these into your product and run tests, and confirm that you get positive results when expected.
    • You may want to simply do this on your own, by adding small quantities of the allergen into the sample and running tests. However, take care to be especially careful with your documentation in case questions arise down the line.
  • No matter how the spiked recovery is being run, consider these two factors:
    • Be sure you’re including what could be a realistic amount of contamination—if you’re concerned about catching 25ppm of allergen, loading up your sample with 2000ppm won’t necessarily help you prove anything.
    • The matrix of your allergen-containing foods is just as important as the matrix of your allergen-free foods. If your allergen has been fermented, roasted, pressurized, etc. —your spike needs to be processed in the same way. If you aren’t sure how to think about your matrices, this previous Allergen Alley post is a good starting place.

Once you’ve proven that the test kit in question can in fact show positive results when traces of allergen are present, you can confidently and comfortably incorporate it into your larger allergen control plan. If your matrices change, you’ll want to re-validate whatever’s new.

While it can be tempting to rely on a kit’s general validation, taking the extra step to validate your unique matrices is an essential part of a truly robust food safety plan. If you’re stumped for how to begin, contact your kit provider—after all, you share the same goals: Safe, allergen-free food for consumers who rely on you to keep themselves and their families healthy and well fed.

Karen Everstine, Decernis
Food Fraud Quick Bites

“Natural Flavor” Claims

By Karen Everstine, Ph.D.
No Comments
Karen Everstine, Decernis

The company that produces the very popular flavored sparkling water brand LaCroix is facing a class action lawsuit that alleges false claims of the product being “all natural.” The suit alleges that certain flavor chemicals used in the beverage are, in fact, artificial ingredients. These flavor chemicals include limonene, linalyl propionate (linalool propionate), linalool and ethyl butyrate (ethyl butanoate). While these flavor chemicals can be synthesized, they are naturally occurring chemical constituents and can therefore be derived from natural sources.

The safety of the beverages is not at issue; this is a labeling question. The suit states that linalool is “used in cockroach insecticide,” which is inflammatory and misleading. Chemical compounds, including those used as food ingredients, naturally have multiple applications and this does not have any bearing on the question of whether they are safe to use in foods.

Presumably, the labeling issue of whether these flavor chemicals were naturally or synthetically derived will be addressed as the suit progresses. This suit does, however, highlight some of the challenges we have in tracking food fraud information related to flavors.

Flavors are big business. Appealing flavors enabled LaCroix to make unsweetened sparkling water explode in popularity. If you have been on the Institute of Food Technologists Annual Meeting expo floor, you have seen the prominent displays and creative food samples offered up by the big flavor houses. It is a competitive business and very proprietary. The FDA labeling requirements for flavors allow them to be listed generally as “spice,” “natural flavor,” or “artificial flavor” (or a combination of those). This makes tracking and standardizing public records of food fraud related to flavors challenging.

Our data includes more than 60 of food fraud related to flavors represented as “natural.” Most of these records are linked to vanilla extract or various essential oils. However, we have also captured a handful of records that address misrepresentation of synthetic flavor chemicals as naturally-derived. This includes records for linalool and ethyl butyrate, among others such as vanillin and linalyl acetate. However, none of these records describe publicly reported incidents of fraud for naturally-derived flavor chemicals. The records are based on peer-reviewed publications aimed at method development for authentication of natural flavors.

Added value claims such as “natural” tend to increase food fraud risk because the costs of production can be so much higher. While an ingredient like vanilla extract is certainly one example of this, we do not tend to see the same level of evidence of food fraud potential for naturally-derived flavor chemicals in public records. When our users need to conduct a food fraud vulnerability assessment for a natural flavor that is a proprietary blend of flavor chemicals, we suggest that they incorporate information from the entire natural flavors group into their assessment. Given the proprietary nature of flavor blends and FDA labeling requirements, it is not feasible for us to track every individual flavor blend in our database.

Fortunately, given the importance of flavors to the food industry, flavor companies have a vested interest in preserving their client relationships and public reputation by ensuring flavors labeled as “natural” qualify for that label claim.

Resources

  1. The Decernis Food Fraud Database is a continuously updated collection of food fraud records curated specifically to support vulnerability assessments. Information is gathered from the scientific literature, regulatory reports, media publications, judicial records, and trade associations from around the world and is searchable by ingredient, adulterant, country, and hazard classification.

—Update— February 19, 2020: National Beverage Corp.announced dismissal of “all of the allegations contained in a prior lawsuit which challenged LaCroix’s natural ingredient labeling.” –END Update–

HPP, high-pressure processing

HPP Keeps Food Safe, While Extending Shelf Life

By Mark Duffy
1 Comment
HPP, high-pressure processing

Research shows the global high pressure processing (HPP) food market to be worth $14 billion in 2018. By 2023, the market will reach an estimated $27.4 billion and will grow to $51.1 billion by 2027, according to Visiongain, a UK-based business intelligence company. This growth is a result of many factors, including consumer trends, food safety and food industry demand.

One of the biggest consumer food trends is the clean label movement. Consumers are more attentive to what they eat and drink than ever before, requesting more information about the products they buy and consume. For instance, 73% of U.S. consumers agree it is important that ingredients on a food label are familiar and would be used at home, according to Innova Market Insights, a market research firm for the food and beverage industry.

Consumers want fresh, convenient and less processed foods and beverages. Shoppers, especially millennials, are willing to spend more money to receive better-for-you products, and they are also more willing to research production methods before making purchases.

HPP, high-pressure processing
An employee loads meat, sealed in its package, into the HPP canister where it will be subjected to isostatic water pressure (300 to 600 Mpa or 43,500 to 87,000 psi – five times stronger than that found at the bottom of the ocean – for typically one to six minutes. Pressures above 400 MPa / 58,000 psi at cold (+ 4ºC to 10ºC) or ambient temperature inactivate the vegetative flora (bacteria, virus, yeasts, molds and parasites) present in food, extending shelf life and ensuring food safety. All images courtesy of Universal Pure

On the industry side, due to an increasing concern over food safety and the rise in foodborne illness, food producers and retailers are seeking reliable food safety and preservation methods that will help ensure the best product quality. Not only do they want to keep their customers safe, they also want to ensure their brand is protected.

Food waste and sustainability is also important to consumers and industry. In the 2017 Nielsen Global Sustainability Survey, 68% of Americans said that it is important that companies implement programs to improve the environment; 67% will be prioritizing healthy or socially-conscious food purchases in 2018; and 48% will change their consumption habits to reduce their environmental impact.

Companies want to be responsible and make sure good food does not go to waste. Longer shelf life decreases a product’s chance of ending up in a landfill. Additionally, the longer a product lasts, the further it can be safely distributed and sold.

What is HPP?

High pressure processing (HPP) ironically isn’t really processing at all. HPP is a unique food preservation method that utilizes cold water and extreme pressure (up to 87,000 psi) to inactivate foodborne pathogens and spoilage organisms.

The effectiveness of the HPP process depends on the amount of pressure applied, vessel holding time, temperature, product type and targeted pathogens and spoilage organisms.

Unlike chemical and thermal treatments that can compromise flavor, vitamins and nutrients, HPP is a non-thermal, non-chemical process. Without the use of heat, the product’s original qualities remain intact. Also, because water pressure is applied uniformly in all directions, HPP foods retain their original shape.

HPP, high pressure processing
HPP equipment on a plant floor. Food, already sealed in its package, is loaded into these gray and yellow canisters and sent through the HPP vessel behind them where water and high pressure are applied to inactivate foodborne pathogens.

Current and New Applications for HPP

One of the most popular uses for HPP is for proteins, including roast beef, chicken, pork and ground meats like turkey, chicken and beef. Other uses include premium juices, dips, wet salads, dairy and seafood, as well as pet food.
Some of its newer applications are in the preservation of baby food, premium juices, plant-based protein drinks, cocktail mixers, nutrient dense shots, coffee and tea selections and bone broth. HPP is widely used for ready-to-eat meats, dips, guacamole, salsa and hummus. Raw pet food, which has been affected by Salmonella and other pathogenic outbreaks in recent months, is also a growing market for HPP. Just like for their own food, pet owners are demanding fresh, non-processed foods for their pets. HPP is a proven means of creating a safe, clean-label raw pet food.

While food safety is still the number one reason for HPP, many manufacturers and retailers also cite shelf-life extension as a major benefit. Table I is a breakdown on the type of food, shelf-life extension and key benefits of HPP.

Food Type Applications Shelf-Life Extension Key Benefits
RTE (Ready-to-Eat) Meats Sliced, cooked meats: chicken, turkey, ham and beef; uncured ham and sausage Greater than 2X Extends shelf life while addressing common vegetative bacterial concerns. Allows manufacturers and retailers to offer reduced sodium products.
RTC (Ready-to-Cook) Meats Ground meats such as turkey, chicken and perhaps beef. 1.5X to 2.5X Increase food safety while extending product shelf life.
Guacamole, Wet Salads, Salsas, Dressings & Dips Guacamole, salsa, chicken salad, seafood salad, dressings 2X–6X Extends product shelf-life and reduces vegetative bacteria issues.
Juices and Smoothies Super premium juices, juice blends & smoothies 20–60 days HPP is a natural way to deal with microorganisms and extend shelf life without the use of heat ,which can negatively affect color and flavor.
Dairy Yogurt & yogurt-based dressings, cream, sour cream, cream cheese and milk. 2X–10X In yogurt-based products and milk, HPP is believed to give a creamier product consistency.
Seafood Oysters, lobster, crab, shrimp, mussels 2X–4X Meat extraction (yield) is better than by hand shucking or steam methods. Labor savings in this manner makes the HPP’ing of shellfish a great application. The shelf-life extension is also significant.
Table I. A breakdown on the type of food, shelf-life extension and key benefits of HPP.

Cost

The cost of HPP varies depending on the size of production runs, fill efficiency of the product within the HPP vessel and the HPP process parameters. The good news is the cost may be offset by other price reductions that HPP enables such as eliminating food additives. While HPP can be performed in-house, many companies outsource their HPP needs so they do not have to allocate significant capital expenses or disrupt production efficiency with an HPP batch process, allowing them to focus on their core competencies.

A Bright Future for HPP

HPP’s future is bright, with new uses on the horizon. These new uses have already resulted in new market opportunities that increase revenue. As its awareness grows among manufacturers, retailers and food service companies, and with additional education about its benefits, more companies will embrace HPP as part of their food safety program and for its shelf-life benefits. With consumer demand for fresh foods and beverages showing no signs of stopping, HPP will lead the way in helping to produce fresh, safe food and beverage products for all to enjoy.

HPP: Achieve High Standards of Food Safety Without Compromising Food Quality