Tag Archives: pathogens

Dole Organic Lettuce

Dole Recalls Limited Amount of Organic Romaine Hearts

By Food Safety Tech Staff
No Comments
Dole Organic Lettuce

Dole Fresh Vegetables, Inc. has issued a voluntary recall of a limited number of cases of organic romaine lettuce hearts over E.coli contamination. The recalled products, Dole Organic Romaine Hearts 3pk, combined English/French packaging (with Harvested-On dates of 10-23-20 and 10-26-20), and Wild Harvest Organic Romaine Hearts (with Harvested-On dates of 10-23-20 and 10-26-20).

The products were harvested and packed nearly four weeks ago, according to the FDA release and were distributed in AZ, HI, IA, IL, IN, KS, MD, MI, MN, MO, MS, MT, NC, ND and VA. No illnesses have been reported.

magnifying glass

‘Out of Sight, Out of Mind?’ Researchers Explore Produce Distribution Centers as Contamination Sources

By Food Safety Tech Staff
No Comments
magnifying glass

When looking at possible sources of contamination, far less attention has been put on produce distribution centers (DCs). “I think the DCs are a little out of sight, out of mind,” said Laurel Dunn, Ph.D., assistant professor in the department of food science & technology at the University of Georgia in a release from the Center for Produce Safety (CPS). “We have been so focused on foodborne outbreaks and what’s happening at the field level or packinghouse wash water and employees and hand hygiene.” As such, in an announcement from CPS, Dunn discusses a project that seeks to understand the contamination issues happening at the DC level, namely vented produce in breathable containers or stored in coolers. Examples of the items being examined are berries, tomatoes, and onions in mesh bags.

Dunn, along with researchers Laura K. Strawn, Ph.D. of Virginia Tech and Ben Chapman, Ph.D., of North Carolina State University, are focusing on Listeria due to the fact that biofilms can thrive indoors and be difficult to eliminate. The research project, “Environmental microbial risks associated with vented produce in distribution centers”, began on January 1 but was slowed considerably as a result of the COVID-19 pandemic. Thus far the researchers have collected samples from 11 DCs (they initially had a goal of sampling from at least 25 DCs), most of which was conducted before the pandemic. Due to travel restrictions, the researchers may only be able to get samples from operations east of the Mississippi River.

Depending on the outcome of the study, the researchers may also formulate written risk-reduction guidance for DCs. Based on the samples collected, Dunn anticipates they will be able to devise useful information to help DCs.

Jill Henry, Essity
FST Soapbox

The New Hygiene Standard: Building Trust Through Employee Safety

By Jill Henry
No Comments
Jill Henry, Essity

The pandemic has heightened the need for a new hygiene standard at food manufacturing sites. On August 19, OSHA and FDA released a health and hygiene checklist for food manufacturers to increase employee safety and help mitigate the spread of COVID-19 at sites. This checklist reinforces the importance of elevating hygiene standards, but it can be difficult to know where to start—especially for food manufacturers aiming to maintain productivity while maximizing hygiene compliance and safety.

For food manufacturers seeking to navigate OSHA and FDA’s new guide, it’s important to remember that no matter the environment, the basics of hygiene remain true. You can kick-start your updated hygiene plan by implementing simple hygiene best practices and establishing comprehensive and clear protocols to achieve compliance on the road ahead. Remember, employee health and productivity begins with a safety-first mindset. Start by establishing a strong foundation with these tips that will help you maintain your food manufacturing site’s hygiene checklist amid COVID-19 and beyond.

Achieve Hand Hygiene Compliance

Hands are the most exposed part of the body to pathogens. Therefore, hand hygiene is considered one of the most important and effective measures to avoid the transmission of harmful pathogens, viruses and diseases. Given this, consistent and proper handwashing is a fundamental aspect of any hygiene plan, especially in food manufacturing sites where employees frequently touch common surfaces (e.g., door handles, technical equipment, etc.) . People often (and unknowingly) touch their eyes, nose and mouth after touching contaminated surfaces, which contributes to potential transmission.

Hand hygiene is proven to be a primary line of defense in stopping the spread of COVID-19 and other pathogens, but only when conducted properly. To maintain hand hygiene compliance, the CDC advises that employees thoroughly wash their hands with soap and water, under warm or cold water for at least 20 seconds, before properly drying their hands with a paper towel. All too often, people forget the importance of hand drying in the handwashing process, but it’s very significant as hand drying can help remove any remaining germs from the skin. In addition, germs can be transferred more easily to and from wet hands, which makes hand drying critical after a thorough handwashing.

Utilize Signage as Visual Cues

While many are familiar with the importance of hand hygiene, it can be difficult to put into practice when employees are busy on the job and forging ahead on production lines. Keep hand hygiene top of mind by utilizing visual cues, such as signage, to remind employees about when, where and how to wash their hands properly. Signage serves as visual reminders to achieve proper hand hygiene compliance and is an important part of establishing a site’s hygiene standard and foundation.

Opt for signage that includes a direct call to action for employees. Using the word “you” can also increase efficacy by calling directly upon the person reading the sign to participate in hand hygiene compliance. Additionally, signage should be updated frequently to keep employees engaged and hand hygiene top of mind. New and fresh reminders on the importance of handwashing will help keep employees attentive, but if you don’t have the time or resources to continually update on-site signage, leverage free tools available online to help you get started.

Establish Surface Cleaning Protocols without Sacrificing Productivity

COVID-19 can spread from surface-to-person contact. This can happen when an employee carrying the virus touches technical equipment on a production line that is not properly wiped down before the next employee’s shift. With this in mind, it’s critical to establish effective surface cleaning protocols that mitigate instances of cross-contamination and don’t create downtime in production or processing.

To create an efficient surface hygiene plan, assess high-touch areas, and develop a list based on where you observe high-touch surfaces to ensure these areas are properly sanitized ahead of shift changes. Provide employees with the surface cleaning checklist that enables them to effectively sanitize surfaces prior to departing their shift. The checklist should include key areas that must be disinfected, as well as tips to properly disinfect surfaces.

When disinfecting surfaces, use an approved disinfectant and a disposable cloth, which ensures the surface is being wiped down with a non-contaminated wiper each time. If using an alcohol-based product, use one with a minimum of 70% alcohol (i.e., Ethanol or Isopropyl alcohol), and always follow the manufacturer’s application guidelines.

Optimize Sanitization Stations and Dispenser Placement
Think strategically and practically about dispenser placement in food manufacturing sites because where sanitizer dispensers are placed makes a difference in whether they are used by employees. Similar to establishing surface cleaning protocols, start by observing where high-traffic areas are on site, and consider critical entry and exit points that would benefit from a dispenser. Dispensers should also be placed in clear view, so they are easily accessible for employees. Consider pairing signage with dispensers as a helpful reminder to utilize these stations and provide instruction on best practices to sanitize effectively.

Optimizing dispenser placement doesn’t stop with implementation. Once dispensers are in place, continue to monitor where dispensers are most frequently used, and assess other areas prime for dispensers. Remember: Employee hygiene and safety is a priority, and optimally placing dispensers and hygiene solutions where they are needed to encourage use is key to creating a safer environment. Place dispensers in areas such as common spaces, near production lines, in locker rooms, and at entrances and exits in order to encourage regular surface cleaning and hand washing. Flexible mounting solutions and portable solutions can facilitate access in harsher environments. The availability of hygiene products encourages their use, so be sure to keep dispensers fully stocked.

Promote Awareness among Employees and Instill Confidence

It’s more important than ever to build employee trust and confidence. As the saying goes, knowledge is power. Communicate frequently with employees and distribute guidelines around COVID-19 so that they understand the measures being introduced and how you will continually monitor your environment. Consider implementing COVID-19-specific training and education sessions that empower employees to ask questions about hygiene and safety measures on site, and provide essential instruction on COVID-19 and what to do if a case is confirmed among employees. These sessions can also be used to provide further education and emphasis on how individuals can maintain hygiene compliance for the greater good of the manufacturing site and their colleagues.

In the current environment, it’s clear that food manufacturers must secure a new hygiene standard to maintain employee health and safety and continue to deliver essential products. But with ongoing shifts, changes and uncertainty, it can be challenging to juggle operations and hygiene compliance—while instilling trust and confidence among employees. Whether a site is continuing, resuming or re-evaluating operations amid the current pandemic, it is critical to maintain a strong foundation for hygiene, so that employees are safe and essential production moves ahead.

Department of Justice seal

Blue Bell Hit with Record $17.25 Million in Criminal Penalties for 2015 Listeria Outbreak

By Maria Fontanazza
No Comments
Department of Justice seal

Remember the 2015 Listeria outbreak linked to Blue Bell Creameries? The outbreak led to three deaths and 10 illnesses between January 2010 and January 2015. On Thursday the Department of Justice ordered the company to pay $17.25 million in criminal penalties for shipping contaminated products linked to that outbreak. The sentence, enforced by U.S. District Judge Robert Pitman (Austin, Texas), is the largest fine and forfeiture ever imposed in a conviction involving a food safety case.

“American consumers must be able to trust that the foods they purchase are safe to eat,” stated – Acting Assistant Attorney General Jeffrey Bossert Clark, Justice Department’s Civil Division in an agency news release. “The sentence imposed today sends a clear message to food manufacturers that the Department of Justice will take appropriate actions when contaminated food products endanger consumers.”

In May 2020 Blue Bell pleaded guilty to two misdemeanor counts of distributing adulterated ice cream. The following is an excerpt from the Department of Justice news release:

“The plea agreement and criminal information filed against Blue Bell allege that the company distributed ice cream products that were manufactured under insanitary conditions and contaminated with Listeria monocytogenes, in violation of the Food, Drug and Cosmetic Act. According to the plea agreement, Texas state officials notified Blue Bell in February 2015 that samples of two ice cream products from the company’s Brenham, Texas factory tested positive for Listeria monocytogenes, a dangerous pathogen that can lead to serious illness or death in vulnerable populations such as pregnant women, newborns, the elderly, and those with compromised immune systems. Blue Bell directed its delivery route drivers to remove remaining stock of the two products from store shelves, but the company did not recall the products or issue any formal communication to inform customers about the potential Listeria contamination. Two weeks after receiving notification of the first positive Listeria tests, Texas state officials informed Blue Bell that additional state-led testing confirmed Listeria in a third product. Blue Bell again chose not to issue any formal notification to customers regarding the positive tests. Blue Bell’s customers included military installations.”

Mike Edgett, Sage

COVID-19 Leads Food Companies and Meat Processors to Explore AI and Robotics, Emphasize Sanitation, and Work from Home

By Maria Fontanazza
No Comments
Mike Edgett, Sage

The coronavirus pandemic has turned so many aspects of businesses upside down; it is changing how companies approach and execute their strategy. The issue touches all aspects of business and operations, and in a brief Q&A with Food Safety Tech, Mike Edgett of Sage touches on just a few areas in which the future of food manufacturing looks different.

Food Safety Tech: How are food manufacturers and meat processors using AI and robotics to mitigate risks posed by COVID-19?

Mike Edgett: Many food manufacturers and meat processors have had to look to new technologies to account for the disruptions caused by the COVID-19 pandemic. While most of these measures have been vital in preventing further spread of the virus (or any virus/disease that may present itself in the future), they’ve also given many food manufacturers insight into how these technologies could have a longer-term impact on their operations.

For instance, the mindset that certain jobs needed to be manual have been reconsidered. Companies are embracing automation (e.g., the boning and chopping of meat in a meatpacking plant) to replace historically manual processes. While it may take a while for innovations like this to be incorporated fully, COVID-19 has certainly increased appetite amongst executives who are trying to avoid shutdowns and expedited the potential for future adoption.

FST: What sanitation procedures should be in place to minimize the spread of pathogens and viruses?

Edgett: In the post-COVID-19 era, manufacturers must expand their view of sanitation requirements. It is more than whether the processing equipment is clean. Companies must be diligent and critical of themselves at every juncture—especially when it comes to how staff and equipment are utilized.

While working from home wasn’t a common practice in the manufacturing industry prior to March 2020, it will be increasingly popular moving forward. Such a setup will allow for a less congested workplace, as well as more space and time for bolstered sanitation practices to take place. Now and in the future, third-party cleaning crews will be used onsite and for machinery on a daily basis, with many corporations also experimenting with new ways to maintain the highest cleanliness standards.

This includes the potential for UV sterilization (a tactic that is being experimented with across industries), new ways to sterilize airflow (which is particularly important in meatpacking plants, where stagnant air is the enemy) and the inclusion of robotics (which could be used overnight to avoid overlap with human employees). These all have the potential to minimize the spread of pathogens and, ultimately, all viruses that may arise.

Mike Edgett, Sage
Mike Edgett is an enterprise technology and process manufacturing expert with 20+ years leading business strategy for brands such as Infor, Quaker Oats and Bunge Foods. At Sage, he leads the U.S. product marketing team focused on the medium segment.

FST: How is the food industry adjusting to the remote working environment?

Edgett: While the pandemic has changed the ways businesses and employees work across most industries, F&B manufacturers did face some unique challenges in shifting to a remote working environment.

Manufacturing as a whole has always relied on the work of humans, overseeing systems, machinery and technology to finalize production—but COVID-19 has changed who and how many people can be present in a plant at once. Naturally, at the start of the pandemic, this meant that schedules and shifts had to be altered, and certain portions of managerial oversight had to be completed virtually.

Of course, with employee and consumer safety of paramount concern, cleaning crews and sanitation practices have taken precedent, and have been woven effectively and efficiently into altered schedules.

While workers that are essential to the manufacturing process have been continuing to work in many facilities, there will likely be expanded and extended work-from-home policies for other functions within the F&B manufacturing industry moving forward. This will result in companies needed to embrace technology that can support this work environment.

FST: Can you briefly explain how traceability is playing an even larger role during the pandemic?

Edgett: The importance of complete traceability for food manufacturers has never been greater. While traceability is by no means a new concept, COVID-19 has not only made it the number one purchasing decision for your customers, but [it is also] a vital public health consideration.

The good news is that much of the industry recognizes this. In fact, according to a survey conducted by Sage and IDC, manufacturing executives said a key goal of theirs is to achieve 100% traceability over production and supply chain, which serves as a large part of their holistic digital mission.

Traceability was already a critical concern for most manufacturers—especially those with a younger customer base. However, the current environment has shone an even greater spotlight on the importance of having a complete picture of not only where our food comes from—but [also] the facilities and machinery used in its production. Major budget allocations will surely be directed toward traceability over the next 5–10 years.

Mice, pests

Pests Don’t Rest During a Pandemic

By Food Safety Tech Staff
No Comments
Mice, pests

The COVID-19 pandemic has forced the closure of hundreds of restaurants, food processors and other businesses nationwide. As weeks went on, increased rodent activity plagued many businesses, some of which has been attributed to a change in food sources and availability—so much so that the CDC released a warning about rodent control in restaurants and other commercial businesses that have either been closed or have had limited service during the pandemic. “Environmental health and rodent control programs may see an increase in service requests related to rodents and reports of unusual or aggressive rodent behavior,” the CDC stated last month.

As the American economy reopens, many food establishments and facilities must consider three key points that will affect pest management during this time:

  • Pest pressure continues. Rodents are on a never-ending search for food, water and harborage.
  • Change in business patterns. Different inbound and outbound shipments; changes in employee shifts and production schedules; new supply chain partners.
  • Service provider access. Access to facilities and secure areas; changes in facility structure, equipment and storage

Factoring the many changes that COVID-19 has prompted, the role of pest management is more important than ever. We invite you to join us for Food Safety Tech’s upcoming complimentary virtual conference, “Integrated Pest Management: Protect Food Safety and Prevent the Spread of Pathogens”, on June 30. Our Technical Service Lead, Joe Barile, will discuss pest management and risk mitigation in the COVID-19 world; he will be followed by Orkin’s VP of Quality Assurance and Technical Services, Judy Black, on the key components to successful IPM and pest management programs, and Angela Anandappa, Ph.D. of the Alliance for Advanced Sanitation on how an effective sanitation program can protect against pest and food contamination. Register now.

Frank Meek, Orkin
Bug Bytes

How to Keep Pathogen-Spreading Pests Out of Your Business

By Frank Meek
No Comments
Frank Meek, Orkin

As food processors and retailers work tirelessly to feed the public during the current global health pandemic, pests continue to work overtime to keep their food supply on track. Filth flies, cockroaches and rodents, in particular, pose a threat to the food supply chain, especially with concerns of the transmission of pathogens at an all-time high. The last thing your business needs is an avoidable food safety incident that threatens your reputation and bottom line.

When it comes to food safety, pathogen-spreading pests have no place in your facility and pose a major public health risk. Not only can these filthy pests become a nuisance within your facility, they can also contaminate your products and spread foodborne bacteria such as Salmonella, E. coli and Listeria, which can cause illnesses.

Knowing what attracts these pests to your facility and the dangers they pose is important for effective removal. Let’s dive into the signs of cockroaches, filth flies and rodents, and the specific concerns they can cause.

Frank Meek will share his expertise during a complimentary  webinar on March 4, “Making the Grade: Tips for Passing Food Safety Audits During the Pandemic” Cockroaches

Cockroaches seek four things that food processing facilities provide in abundance—food, shelter, proper temperatures and water. With the ability to squeeze through tiny gaps and cracks, these dirty pests enjoy crawling under equipment, in cabinets and through drains to find their next meal. Cockroaches can be found in and around almost any place within your facility. They’re capable of carrying harmful bacteria that they can spread from one location to another. Look out for droppings, cast skins or egg cases, which might signal a cockroach problem.

Filth Flies

You may think these types of flies have no desire to be inside, but they are in fact happy to go wherever the conditions are right. The most common filth fly is the housefly. These winged pests can carry and spread more than 100 disease-causing pathogens including bacteria, fungi and viruses. These can cause illnesses such as cholera, dysentery and infantile diarrhea. Filth flies in your facility can lead to a major public health issue if your food becomes contaminated.

Rodents

One of the filthiest pests around, rodents can contaminate your food supply, destroy or consume products and cause structural damage to your facility. Like cockroaches, mice and rats can fit through relatively small spaces to find food and water. With sightings on the rise during the COVID-19 pandemic, you’ll want to keep an eye out for rodents near your food products. These mighty chewers pose a public health threat as they can transmit diseases such as hantavirus and lymphocytic choriomeningitis (LCM) via their urine and droppings.

The presence of these vermin in your facility threatens public health. Additionally, an infestation can slow down the supply chain by causing businesses to recall contaminated foods.

A rigorous sanitation routine is one of the most effective ways to proactively manage pests like cockroaches, rodents and filth flies. Regularly sanitizing and disinfecting your facility can help eliminate any pathogens left behind on hard surfaces and remove the attractants for which they search. While cleaning removes dirt and buildup, sanitization and disinfection kill bacteria and pathogens, reducing the risk of a food safety issue.

Including the following tips in your cleaning routine can help keep your products and reputation safe from harm.

  • Clean out drains routinely with an enzymatic cleaning solution that can break down the organic grime.
  • Disinfect high-touch hard surfaces with a proper and low-toxicity disinfectant to kill bacteria and pathogens that can cause food illnesses.
  • Move dumpsters away from your building to reduce flies being attracted to and then gaining easy entry into your facility.
  • Wipe spills as soon as they occur to prevent them from becoming a sticky paradise for flies and cockroaches.
  • Practice good hygiene in your work environment and ensure employees are washing their hands regularly and keeping break rooms free of trash and leftovers.

Implementing exclusion practices such as sealing cracks, gaps and holes in walls with a proper sealant can also help you keep pests out. Budget allowing, consider investing in insect light traps and mechanical traps to help reduce flying insects inside.

Communication with your suppliers and distributors is also important to ensure food safety. If your partners implement similar measures, you’re more likely to protect the public from harmful diseases. Furthermore, customers will continue to trust your business.

While following these tips can help reduce the chances of a pest infestation, it’s not always possible to keep pests and the pathogens they spread out of your food processing facility. Work with a trained pest control specialist to develop a customized prevention program for your business as each type of pest requires specific treatment. They can also help you schedule inspections to identify conditions in and around your facility that may attract flies, cockroaches and rodents, among other pests.

Wendy Stanley, Radley Corp.
FST Soapbox

The Future of Food Production: IoT and Blockchain

By Wendy Stanley
1 Comment
Wendy Stanley, Radley Corp.

Since the early 20th century, food safety has been a paramount concern for consumers in the United States. Upton Sinclair’s The Jungle, which painted a bleak, brutal, and downright disgusting picture of turn-of-the-century food processing facilities led to the creation of some of the country’s first food safety laws. Today, federal agencies and statutes make up a comprehensive food safety system to ensure that the growth, distribution and consumption of foods are safe from start to finish.

While food safety has significantly improved in the century since Sinclair’s time, stories of major outbreaks of foodborne illnesses continue to pop up across the country. Over the past few years, a significant number of outbreaks as a result of pathogens have made the headlines. To mitigate the threat of public health crises and ensure food production and distribution is safe and secure, companies must rely on modern technology to trace the movement of food across the entire supply chain.

How Technology Is Changing the Food Industry

Technology is a powerful, innovative force that has changed the way even well established companies must do business in order to stay relevant. From easier access to nutritional information to digital solutions that make food manufacturing and distribution more efficient, greater consumer awareness driven by technology empowers consumers to make decisions that can greatly affect the food industry’s bottom line.

Technology-driven accountability is playing one outsized role in allowing consumers to make better choices about the foods they consume and purchase. Social media and smartphone apps connect consumers to a wealth of resources concerning the harmful effects of certain ingredients in their food, the source of products, and how particular items are made and produced. In 2015, for example, The Campbell Soup Company removed 13 ingredients from its traditional soup recipes as a result of a greater public demand to understand food sources. Neither food giants nor small producers should expect to remain immune from greater public scrutiny over food health and safety.

Nutritional research is also helping change the conversation around food, granting nutritionists and consumers alike greater access to food-related data. Through easily accessible scholarly journals, apps that provide real-time nutrition information, and meal tracking apps that help users log and understand what they’re eating, consumers can gain a better understanding of nutrition to make more informed choices about their daily food intake. Researchers can also use food-tracking apps to make discoveries about consumer behavior and foods that are eaten.

Technology is also being used to tackle food waste, one of the most pervasive problems facing the food industry. One-third of the total amount of food produced globally, amounting to nearly $1.2 trillion, goes to waste every year. Solving this pervasive crisis has become an industry imperative that is being tackled through a variety of innovative technologies to improve shelf-life, dynamically adjust pricing based on sell-by dates, and allow restaurants to automatically monitor their daily waste.

In the food manufacturing sector, digitally-connected supply chain systems are providing greater visibility into the production of foods and beverages. Supplier management technology delivers data that can be used to optimize processes and improve quality in real-time, making it easy to adjust to consumer demands, respond to logistics challenges, and boost government compliance. The enhanced operational benefits offered through improved supply chain visibility allows manufacturers to produce products faster, safer, and with greater transparency.

Online ordering has also ushered in a new era of food industry behavior. The growing assortment of online ordering apps has just given the consumer more control over quickly ordering their next meal. The trend in online ordering has also allowed restaurants to experiment with new business models like virtual kitchens that offer menus that are only available online.

Connected Factory, manufacturing
The IoT adds a layer of technology to the food manufacturing process. (All photos licensed through Adobe Stock)

IoT: The Future of Food Safety

From the farm to the carryout bag, the impact of technology on the greater food industry is already evident in daily practice. Through enhanced access to data, food producers can run an efficient supply chain that reduces waste, boosts productivity, and meets consumer demand in real-time. Using a variety of online resources, consumers are empowered to quickly make well-informed food purchases that are healthier, more convenient and more sustainable than ever before.

The Internet-of-Things (IoT) adds a layer of technology to the food manufacturing process to ensure greater food safety. A broad series of networked sensors, monitors, and other Internet-connected devices, IoT technology can oversee the entire food manufacturing and distribution process from the warehouse to the point of sale. Boosting transparency across the board, intelligent sensors and cameras can transform any food manufacturing operation into a highly visible, data-backed process that allows for better decision-making and improved real-time knowledge.

While IoT technology is a powerful tool that can improve the efficiency of restaurants and provide enhanced customer experiences, some of its greatest potential lies in its ability to safely monitor food preparation and production. Live data from IoT devices makes it possible to closely monitor food safety data points, allowing manufacturers and restaurants to reduce the risks of foodborne illness outbreaks through enhanced data collection and automated reporting.

Domino’s Pizza, for instance, embraced IoT technology to enhance management processes and monitor the food safety of its products. In the past, restaurants have relied on workers to record food temperatures, a practice that was occasionally overlooked and could lead to issues with health inspectors. Using IoT devices for real-time temperature monitoring, Domino’s automatically records and displays temperature levels of a store’s production, refrigeration, and exhaust systems, allowing employees to view conditions from a live dashboard.

In addition to boosting food safety, the comprehensive monitoring offered by IoT technology can help food companies reduce waste, keep more effective records, and analyze more data for improved operations.

IoT isn’t just a safe solution for improving food safety: It’s a smart solution.

Blockchain: The Future of Food Traceability

The ubiquity of QR codes has made it easy for consumers to quickly gain access to information by scanning an image with their smartphone. From accessing product manuals to downloading songs, QR codes make it simple to provide detailed and relevant content to users in a timely manner.

Blockchain enhances the safety of the business of food production itself.

Blockchain technology provides a powerful opportunity to provide consumers with similar information about food safety. Able to instantaneously trace the lifecycle of food products, blockchain can report a food’s every point of contact throughout its journey from farm to table. By scanning a QR code, for instance, users can quickly access relevant information about a food product’s source, such as an animal’s health, and welfare. Shoppers at Carrefour, Europe’s largest retailer, area already using blockchain traceability to track the stage of production of free-range chickens across France.

Walmart piloted a blockchain implementation by tracing a package of sliced mangoes across every destination until it hit store shelves, from its origin at a farm in Mexico to intermittent stops at a hot-water treatment plant, U.S processing plant, and cold storage facility. Real-time product tracing can be conducted in just two seconds, enabling Walmart and other vendors to provide consumers with access to food safety information that could easily be updated should an outbreak or contamination occur.

Blockchain’s inherent transparency not only makes it possible to identify the safety of food production; it also enhances the safety of the business of food production itself. Because blockchain is based upon an immutable, anonymous ledger, record keeping and accounting can be made more secure and less prone to human error. Payments to farmers and other food suppliers can also become more transparent and equitable.

The High Tech Future of Food

Unlike the days of Sinclair’s The Jungle, food transparency is the name of today’s game. As consumers continue to demand greater access to better food on-demand, food producers must continue to find innovative ways of providing safe, healthy, and ethical solutions.

IoT devices and blockchain present food manufacturers with powerful technological solutions to solve complex problems. Brands choosing to rely on these innovations, such as Domino’s and Walmart, are helping ensure that food is produced, prepared and distributed with a foremost emphasis on health and safety. As these technologies continue to become more intelligent, well-connected, and embraced by leading food producers, consumers should rest assured that they’ll always be able to know exactly what they’re eating, where it’s from, and whether it’s safe.

Megan Nichols
FST Soapbox

How to Prevent Foodborne Pathogens in Your Production Plant

By Megan Ray Nichols
No Comments
Megan Nichols

Foodborne pathogens, such as bacteria and parasites in consumable goods, can result in illnesses and deaths, wreaking havoc on residents of states and countries. The companies at fault often face severe damage to their reputation as people fear that continuing to do business with a brand is not safe. Moreover, if the affected enterprises do not take decisive steps to prevent the problem from happening again, they may receive substantial fines or closure orders.

Statistics from the U.S. federal government indicate that there are approximately 48 million cases of foodborne illnesses in the American food supply each year. Fortunately, there are proven steps that production plant managers can take to minimize the risk of foodborne pathogens. Being familiar with the preventative measures, and taking steps to implement them prevents catastrophes.

Engage with Suppliers about Their Efforts to Kill or Reduce Foodborne Pathogens

Foodborne pathogens can enter a production plant on items like fresh produce received from farm suppliers. Agricultural professionals commonly use chlorine to decontaminate goods before shipping them. However, researchers used a chlorine solution on spinach leaves to assess its effectiveness in killing common types of bacteria. The team discovered that, even after chlorine exposure, some bacteria remained viable but undetectable by industrial methods.

Foodborne pathogens can originate at farms for other reasons, too. Failing to take the proper precautions during animal slaughter can introduce contaminants into meats that end up in food production facilities. Water impurities can also pose dangers.

All production plants should regularly communicate with suppliers about the actions they take against foodborne pathogens. Food safety is a collective effort. Practicing it means following all current guidance, plus updating methods if new research justifies doing so. If suppliers resist doing what’s in their power to stop foodborne pathogens, they must realize they’re at risk for severing profitable relationships with production plants that need raw goods.

Consider Using Sensors to Maintain Safe Conditions

The Internet of Things (IoT) encompasses a massive assortment of connected products that benefit industries and consumers alike. One practical solution to enhance food safety in a production plant involves installing smart sensors that detect characteristics that humans may miss.

For example, the USDA published a temperature safety chart that explains what to do with food after a power outage. Most items that people typically keep in refrigerators become dangerous to eat if kept above 40o F for more than two hours.

Food production plants typically have resources like backup power to assist if outages occur. But, imagine a cooler that appears to work as expected but has an internal malfunction that keeps the contents at incorrect temperatures. IoT sensors can help production plant staff members become immediately aware of such issues. Without that kind of information, they risk sending spoiled food into the marketplace and getting people sick.

Researchers also developed a sensor-equipped device that detects the effectiveness of hand washing efforts. In a pilot program involving 20 locations, contamination rates decreased by 60% over a month. Most restrooms at food preparation facilities remind people to wash their hands before returning to work. What if a person takes that action, but not thoroughly enough? Specialty sensors could reduce that chance.

Install Germicidal Ultraviolet Lights

With much of the world on lockdown due to the COVID-19 pandemic, many people want to know if germicidal ultraviolet lights could kill the novel coronavirus. Researchers lack enough information to answer that question definitively. They do know, however, that germicidal ultraviolet lights kill up to 99.99% of bacteria and pathogens.

Plus, these lights are particularly useful in food production because they get the job done without harsh chemicals that could make products unsafe. Ultraviolet lights can damage the skin and eyes, so you must only run them when there are no humans in the room. However, it’s immediately safe to enter the environment after switching the lights off.

These specialized light sources do not eliminate the need for other food safety measures. Think about implementing them as another safeguard against adverse consequences.

Teach Workers about Safe Practices

Food contamination risks exist at numerous points along the supply chain. Mishandling is a major culprit that could make several parties partially responsible for a foodborne pathogen problem. For example, if a person does not wear the proper gear when handling food or stores items intended for raw consumption in places where meat juices touch them, either of those things and many others could cause issues with foodborne pathogens.

As you inform employees about which procedures to take to manage the risks, emphasize that everyone has an essential role to play in keeping products free from contaminants. If workers make ready-to-eat foods, such as packaged sandwiches, ensure they understand how to avoid the cross-contamination that happens when reusing cutting boards or utensils without washing them first.

The FDA requires domestic and foreign food facilities to analyze and mitigate risks. Employee training is not the sole aspect of staying in compliance, but it’s a major component. If a person makes a mistake due to improper or nonexistent training, that blunder could have significant financial ramifications for a food production facility.

Widely cited statistics indicate that food recall costs average more than $10 million, which is a staggering figure in itself. It doesn’t include litigation costs incurred when affected individuals and their loved ones sue companies, or the expenses associated with efforts to rejuvenate a brand and restore consumer confidence after people decide to take their business elsewhere.

Ensuring that workers receive the necessary training may be especially tricky if a human resources professional hires a large batch of temporary employees to assist with rising seasonal demands. If a higher-up tells them that time is of the essence and the new workers must be ready to assume their roles on the factory floor as soon as possible, training may get overlooked. When that happens, the outcomes could be devastating. Efficiency should never get prioritized over safety.

Stay Abreast of Emerging Risks

Besides doing your part to curb well-known threats that could introduce foodborne pathogens, spend time learning about new problems that you may not have dealt with before.

For example, scientists have not confirmed the origin of COVID-19. However, since early evidence suggested live animal sales and consumption may have played key roles, Chinese officials cracked down on the wildlife trade and imposed new restrictions on what was largely an unregulated sector cloaked in secrecy.

Much remains unknown about COVID-19, and it’s but one virus for food producers to stay aware of and track as developments occur. The ongoing pandemic is a sobering reminder not to blame specific groups or ethnicities, and to avoid jumping to hasty conclusions. It’s good practice to dedicate yourself to learning about any production risks that could introduce foodborne pathogens. Read reputable sources, and don’t make unfounded assumptions.

A Collective and Constant Effort

There is no single way to combat all sources of foodborne pathogens. Instead, anyone involved in food production or supply must work diligently together and know that their obligation to prevent issues never ceases.

Raj Rajagopal, 3M Food Safety
In the Food Lab

Pathogen Detection Guidance in 2020

By Raj Rajagopal
No Comments
Raj Rajagopal, 3M Food Safety

Food production managers have a critical role in ensuring that the products they make are safe and uncontaminated with dangerous pathogens. Health and wellness are in sharp focus for consumers in every aspect of their lives right now, and food safety is no exception. As food safety becomes a continually greater focus for consumers and regulators, the technologies used to monitor for and detect pathogens in a production plant have become more advanced.

It’s no secret that pathogen testing is performed for numerous reasons: To confirm the adequacy of processing control and to ensure foods and beverages have been properly stored or cooked, to name some. Accomplishing these objectives can be very different, and depending on their situations, processors rely on different tools to provide varying degrees of testing simplicity, speed, cost, efficiency and accuracy. It’s common today to leverage multiple pathogen diagnostics, ranging from traditional culture-based methods to molecular technologies.

And unfortunately, pathogen detection is more than just subjecting finished products to examination. It’s become increasingly clear to the industry that the environment in which food is processed can cross-contaminate products, requiring food manufacturers to be ever-vigilant in cleaning, sanitizing, sampling and testing their sites.

For these reasons and others, it’s important to have an understanding and appreciation for the newer tests and techniques used in the fight against deadly pathogens, and where and how they might be fit for purpose throughout the operation. This article sheds light on the key features of one fast-growing DNA-based technology that detects pathogens and explains how culture methods for index and indicator organisms continue to play crucial roles in executing broad-based pathogen management programs.

LAMP’s Emergence in Molecular Pathogen Detection

Molecular pathogen detection has been a staple technology for food producers since the adoption of polymerase chain reaction (PCR) tests decades ago. However, the USDA FSIS revised its Microbiology Laboratory Guidebook, the official guide to the preferred methods the agency uses when testing samples collected from audits and inspections, last year to include new technologies that utilize loop-mediated isothermal amplification (LAMP) methods for Salmonella and Listeria detection.

LAMP methods differ from traditional PCR-based testing methods in four noteworthy ways.

First, LAMP eliminates the need for thermal cycling. Fundamentally, PCR tests require thermocyclers with the ability to alter the temperature of a sample to facilitate the PCR. The thermocyclers used for real-time PCR tests that allow detection in closed tubes can be expensive and include multiple moving parts that require regular maintenance and calibration. For every food, beverage or environmental surface sample tested, PCR systems will undergo multiple cycles of heating up to 95oC to break open DNA strands and cooling down to 60oC to extend the new DNA chain in every cycle. All of these temperature variations generally require more run time and the enzyme, Taq polymerase, used in PCR can be subjected to interferences from other inhibiting substances that are native to a sample and co-extracted with the DNA.

LAMP amplifies DNA isothermally at a steady and stable temperature range—right around 60oC. The Bst polymerase allows continuous amplification and better tolerates the sample matrix inhibitors known to trip up PCR. The detection schemes used for LAMP detection frees LAMP’s instrumentation from the constraints of numerous moving pieces.

Secondly, it doubles the number of DNA primers. Traditional PCR tests recognize two separate regions of the target genetic material. They rely on two primers to anneal to the subject’s separated DNA strands and copy and amplify that target DNA.

By contrast, LAMP technology uses four to six primers, which can recognize six to eight distinct regions from the sample’s DNA. These primers and polymerase used not only cause the DNA strand to displace, they actually loop the end of the strands together before initiating amplification cycling. This unique looped structure both accelerates the reaction and increases test result sensitivity by allowing for an exponential accumulation of target DNA.

Third of all, it removes steps from the workflow. Before any genetic amplification can happen, technicians must enrich their samples to deliberately grow microorganisms to detectable levels. Technicians using PCR tests have to pre-dispense lysis buffers or reagent mixes and take other careful actions to extract and purify their DNA samples.

Commercialized LAMP assay kits, on the other hand, offer more of a ready-to-use approach as they offer ready to use lysis buffer and simplified workflow to prepare DNA samples. By only requiring two transfer steps, it can significantly reduces the risk of false negatives caused by erroneous laboratory preparation.

Finally, it simplifies multiple test protocols into one. Food safety lab professionals using PCR technology have historically been required to perform different test protocols for each individual pathogen, whether that be Salmonella, Listeria, E. coli O157:H7 or other. Not surprisingly, this can increase the chances of error. Oftentimes, labs are resource-challenged and pressure-packed environments. Having to keep multiple testing steps straight all of the time has proven to be a recipe for trouble.

LAMP brings the benefit of a single assay protocol for testing all pathogens, enabling technicians to use the same protocol for all pathogen tests. This streamlined workflow involving minimal steps simplifies the process and reduces risk of human-caused error.

Index and Indicator Testing

LAMP technology has streamlined and advanced pathogen detection, but it’s impractical and unfeasible for producers to molecularly test every single product they produce and every nook and cranny in their production environments. Here is where an increasing number of companies are utilizing index and indicator tests as part of more comprehensive pathogen environmental programs. Rather than testing for specific pathogenic organisms, these tools give a microbiological warning sign that conditions may be breeding undesirable food safety or quality outcomes.

Index tests are culture-based tests that detect microorganisms whose presence (or detection above a threshold) suggest an increased risk for the presence of an ecologically similar pathogen. Listeria spp. Is the best-known index organism, as its presence can also mark the presence of deadly pathogen Listeria monocytogenes. However, there is considerable skepticism among many in the research community if there are any organisms outside of Listeria spp. that can be given this classification.

Indicator tests, on the other hand, detect the presence of organisms reflecting the general microbiological condition of a food or the environment. The presence of indicator organisms can not provide any information on the potential presence or absence of a specific pathogen or an assessment of potential public health risk, but their levels above acceptable limits can indicate insufficient cleaning and sanitation or operating conditions.

Should indicator test results exceed the established control limits, facilities are expected to take appropriate corrective action and to document the actions taken and results obtained. Utilizing cost-effective, fast indicator tests as benchmark to catch and identify problem areas can suggest that more precise, molecular methods need to be used to verify that the products are uncontaminated.

Process Matters

As discussed, technology plays a large role in pathogen detection, and advances like LAMP molecular detection methods combined with strategic use of index and indicator tests can provide food producers with powerful tools to safeguard their consumers from foodborne illnesses. However, whether a producer is testing environmental samples, ingredients or finished product, a test is only as useful as the comprehensive pathogen management plan around it.

The entire food industry is striving to meet the highest safety standards and the best course of action is to adopt a solution that combines the best technologies available with best practices in terms of processes as well –from sample collection and preparation to monitoring and detection.