On June 1, Food Safety Tech is hosting a web seminar (also penned a “virtual conference”) about food hazards in the realm of pathogens and allergens. “Food Hazards: Detection, Mitigation & Control” begins at 11 am ET, kicking off with a presentation from Mickey Parish, Ph.D., senior science advisor at CFSAN, about the agency’s policy on Listeria monocytogenes. The following is a preview of what you’ll learn during the complimentary event (that’s right, it’s free for all attendees).
Critical Elements for a Successful Pathogen Environmental Monitoring Program
Nearly every segment of the food and pet food industries are either working on implementing pathogen environmental monitoring programs (PEMPs), or are working to optimize programs already in existence. Programs are increasing in complexity with many now covering multiple environmental pathogens, hygienic facility zones and sampling zones. Regulators and customers are stepping up requirements for aggressive, science-based PEMPs. The seven most critical elements for a successful PEMP will be discussed. These elements include: management commitment, determining the need for and stringency of the program, risk evaluation, sampling plan, sampling methods, data management and corrective actions.
Allergen Detection & Control
While global market demand for free-from food products is increasing, undeclared and mislabelled allergens, sulphites and gluten, throughout the supply chain, continue to be the number one cause of consumer product recalls.
To meet the varied regulatory landscape and protect consumers, effective preventative management systems must be implemented, verified and validated. What are the challenges, risks and opportunities for manufacturers and retailers to protect their brands? This informative session will provide insights into:
Government regulations and how management systems can align with the Food Safety Modernization Act (FSMA) and the Safe Food for Canadians Act
Successful interventions and protocols to reduce the risk of gluten and allergen related recalls
Differences between Management System/ Process and Product Third-Party Certifications
Pathogen Mitigation: Sanitary Design in Facilities and Sanitation Methods
This presentation will go into detail regarding pathogen mitigation strategies for food processing facilities. The relationship between hygienic design and sanitation as they factor into pathogen mitigation will also be discussed. The presentation will then examine various sanitation methods and how they can be applied within the food industry to help eliminate and control pathogens.
Each educational session will be followed by a technology spotlight and an interactive Q&A between attendees and speakers. Don’t miss out on this event—Register here!
NGS, or next generation sequencing, is described as the “most updated automated DNA sequencing technology available,” according to Eurofins’ Gregory Siragusa, Ph.D. and Douglas Marshall, Ph.D. Over the past few years, there’s been quite a bit of discussion around the technology and its role in transforming food safety testing.
Clear Labs has been especially vocal about the potential of NGS, as the company has built itself on an NGS platform with capabilities that include GMO testing, pathogen detection and ingredient authenticity. The company just announced a pilot program for its NGS platform that aims to bring the technology into the realm of routine food safety testing. Mahni Ghorashi, co-founder of Clear Labs, recently discussed the program with Food Safety Tech.
Food Safety Tech: Is the platform entering the pilot the same as the technology we talked about in the Q&A,“New Whole Genome Sequencing Test Monitors Threat of Pathogens” a couple of years back?. If so, have there been developments since? If this is a different platform, how long has it been in development and what is the novelty and advantages?
Mahni Ghorashi: That’s a good question, and I understand why this could be a little confusing, especially for someone who has followed the development of Clear Labs over the years. (Thank you!).
The current platform being piloted is based on the same fundamental technology we’ve always had, but we have built it out considerably and adapted it for routine food safety testing.
At its core, our platform is based on industry-leading NGS technology paired with IP-protected bioinformatics. It’s always been backed by the world’s largest reference database for genomic food markers and food sample metadata.
Over the last year and a half, we’ve built capabilities into the core platform that allow our system to be deployed at high testing volumes for food safety testing, at scale.
We’ve built in robotics and automation to make this system truly “end-to-end” and to speed the process from start to finish.
We’ve reduced the cost by another order of magnitude, with faster turnaround time and greater accuracy than competing market products.
In short, the latest version of the platform is the first automated system that takes advantage of advanced DNA sequencing, bioinformatics, and robotics.
This pilot represents a new era for Clear Labs and the food safety industry at large. While our tests have always been higher-resolution and higher-accuracy than PCR, we now believe we can compete with the turnaround times and cost of PCR.
FST: What is the duration of the pilot study? What is the goal of the pilot?
Ghorashi: The goal of the pilot study is to demonstrate that NGS is ready to be adopted as the new standard for routine food safety testing. We believe that our pilot study will also help the industry to fully appreciate how NGS technologies will modernize food safety programs, without changing the way food safety is conducted today.
The pilots last for two weeks. Because our platform is for high-volume, routine safety testing, it doesn’t take long to have tested a statistically significant number of samples. We’re able to quickly provide our customers with a report comparing our results to that of their legacy, PCR-based tests.
FST: What feedback have you received about the platform thus far? What is its potential?
Ghorashi: The feedback we’ve gotten has been overwhelmingly positive. We can’t talk specifics until the pilot is complete, but I can tell you in broad terms that our early pilot customers have been overwhelmingly enthusiastic.
The potential is enormous. This NGS platform—the first of its kind—is going to usher in a new era of food safety testing.
Traditional techniques have high rates false negatives and false positives. In 2015, a study from the American Proficiency Institute on about 18,000 testing results from 1999 to 2013 for Salmonella found false negative rates between 2% and 10% and false positive rates between 2% and 6%. Several Food Service Labs claim false positive rates of 5% to 50%.
False positives can create a resource-intensive burden on food companies. Reducing false negatives is important for public health as well as isolating and decontaminating the species within a facility.
The costs savings, but even more important the peace of mind that comes from a near fail-proof system is invaluable to the leading food brand and service labs we’ve been working with.
FST: What are the clearest areas of impact for NGS in food safety?
Ghorashi: The impact of NGS is going to be felt broadly because it will replace existing PCR systems for high-throughput safety testing. Across the food industry, wherever there are PCR systems, we will soon see NGS-based system that will be more comprehensive, accurate, and cost-effective.
And unlike some PCR techniques that can only detect up to five targets on one sample at a time, the targets for NGS platforms are nearly unlimited, with up to 25 million reads per sample, with 200 or more samples processed at the same time. This results in a major difference in the amount of information yielded.
FST: Do you have any additional comments on the pilot program or NGS in general?
Ghorashi: While I can’t talk about specific customers, I should note that our pilot program is already deployed across half of the U.S.’s third-party service labs as well as major food production companies engaged in high-volume, routine safety testing.
The majority of the food safety industry is well aware of how transformative NGS systems can be for both their food safety programs and their bottom line. This pilot will go a long ways toward demonstrating that NGS technology has arrived for primetime in the food safety industry.
We’re still accepting applications for the pilot, and we’re excited to help brands recognize the value of and move forward with this vital progression in testing. After the pilot phase, we’ll be rolling out the full platform at IAFP in July of this year.
Rose Acre Farms has voluntarily recalled eggs from its farm in Hyde County, North Carolina following an investigation by FDA, CDC and other agencies involving Salmonella illnesses. FDA testing determined that eggs produced from this farm are connected to 22 cases of Salmonella Braenderup infections; the CDC is confirming illness information with state health departments.
The exact amount of eggs recalled totals 206,749,248.
The eggs are sold under several brand names, including Coburn Farms, Country Daybreak, Food Lion, Glenview, Great Value, Nelms, and Sunshine Farms, as well as restaurants.
FDA is advising restaurants and retailers that they should not sell or use any recalled shell eggs. In addition, they should take measures to avoid cross-contamination of the food processing environment and equipment by washing and sanitizing display cases and refrigerators regularly, washing and sanitizing cutting boards, surfaces and utensils, and washing hands with hot water and soap after any cleaning or sanitation process. Consumers are advised not to eat the recalled eggs.
Stephen Ostroff, M.D. deputy commissioner for foods and veterinary medicine, sounds excited about the promise of blockchain. He also continues to enthusiastically wave the flag for whole genome sequencing (WGS) in solving foodborne illness cases. At the recent GMA Science Forum, Ostroff shared his usual update on incidents involving pathogens, agency progress in inspections and FSMA, and what the future holds.
The 2018 Food Safety Supply Chain conference features a Blockchain panel discussion | June 12–13 | Learn morePathogens
“There’s been essentially zero change in incidents of pathogens, and in some [cases there have been] increases—despite the fact that we’ve been doing quite a bit to improve the profile of food safety in the United States,” said Ostroff. This isn’t the first time that Ostroff pointed to the fact that foodborne illness is resistant to change, but he still emphasized the disappointment that industry is “way off” from the Healthy People 2020 target rate for pathogens established by the government. “None of these are close to where we thought we would be,” he said, referring to the government’s established target rates for Campylobacter, E.coli O157, Listeria, Salmonella, Vibrio and Yersinia.
Ostroff has previously pointed to improved diagnostics and surveillance systems as being partially responsible for a lack of improvement in the number of foodborne illness cases (due to higher detection rates), but during this particular presentation he brought attention to culture independent diagnostic tests (CIDTs)—which he said are having a “major impact on data collected in FoodNet.” CIDT is relatively new and is more rapid than the culture method, but it doesn’t allow for subtyping or antimicrobial resistance testing.
According to Ostroff, CIDTs have major implications for folks who work in food safety. The overall incidence of infection with foodborne pathogens is not decreasing, and the use of CIDTs makes assessment of trends difficult. CIDTs appear to be finding infections previously undiagnosed or unrecognized. In addition, they could affect the agency’s ability to monitor FSMA impact measures.
Inspections
The agency continues to look at inspection data from both the perspective of the number of inspections and their outcomes. During FY 2017, there were 1253 domestic and 146 foreign inspections. For FY 2018, there have already been 1610 domestic inspections to date.
Enforcement Discretion
In January, FDA issued new enforcement discretion for certain provisions in four FSMA rules. This included resolving issues related to the “farm” definition, requirements for food contact substances under FSVP, and certain written assurances in place for the Preventive Controls (human and animal) rule until FDA comes up with a practical solution to issues raised by stakeholders, Ostroff said.
Oversight of Food Imports
FDA continues to take a risk-based approach to FSVP and overseas inspections. Part of these efforts includes the agency’s systems recognition program where it looks at other mature food safety systems around the world to recognize countries that have programs similar to the United States. Thus far FDA has recognized Australia, Canada and New Zealand food safety systems; It is currently in the process of evaluating European Union members.
Intentional Adulteration Rule
The International Adulteration rule continues to be a hot topic of discussion, especially as it relates to associated costs. FDA is actively working on putting out a draft guidance that will discuss how to conduct vulnerability assessments, along with its interpretation of the rule, according to Ostroff. Part one of the draft should be out “in the very near future”, he said. He added that the agency is trying to be flexible with the rule and although food defense is an important component of food safety, companies should never do anything in the context of food defense that could pose a food safety risk.
Whole Genome Sequencing
WGS provides more precise identification at a genetic level and helps expedite recognition and response time for nearly all current foodborne illness and outbreak investigations. “It’s the new normal—it’s here and it’s here big time,” said Ostroff, adding that the GenomeTrakr network has more than 167,000 isolates sequences in the database and is becoming more and more powerful. “It’s amazing what this tool can do,” he said, citing two recent cases involving strains of Salmonella in papayas and kratom.
Blockchain
“I think blockchain can be really transformational in the world of food safety,” said Ostroff, calling it “traceability on steroids without question”. He thinks the technology could also be useful in addressing food fraud and economically motivated adulteration, and provide more consumer transparency. Right now the FDA is looking very closely at blockchain in context of traceability and FSMA.
3M Food Safety has launched the 3M Molecular Detection Assay 2 – Campylobacter with 3M Campylobacter Enrichment Broth. Poultry producers now have a complete solution for simultaneous monitoring of poultry for both Salmonella and Campylobacter. It can perform up to 96 tests of multiple types in a 60-minute run.
The Enrichment Broth requires just five steps and eliminates the need for microaerophilic incubation, supplements, blood, organic solvents or autoclaving the broth, only requiring the addition of sterile water.
Shiga toxin-producing E. coli in dry flour, and then romaine lettuce. E. coli O104 in fenugreek sprout seeds. Recent announcements of foodborne illness outbreaks have begun involving unusual combinations of bacteria and foods. These out-of-the-ordinary outbreaks and recalls are a small but growing part of the 600 million documented food poisonings that occur worldwide every year according to the World Health Organization. Preventing outbreaks from these new combinations of pathogen and food demand a range of accurate tests that can quickly identify these bacteria. Over the past several years, outbreaks from unusual sources included:
E. coli O121 (STEC) in flour: Last summer, at least 29 cases of a E. coli O121 infection were announced in six Canadian provinces. The source arose from uncooked flour, a rare source of such infections because typically flour is baked into final products. Eight people were hospitalized, and public health officials have now included raw, uncooked flour as well as raw batter and dough as a source of this type of infection.
E. coli O104:H4 in fenugreek sprouts: One of Europe’s biggest recent outbreaks (affecting more than 4,000 people in Germany in 2011, and killing more than 50 worldwide) was originally thought to be caused by a hemorrhagic (EHEC) E. coli strain that from cucumbers, but was but was later found to be from an enteroaggregative E. coli (EAEC) strain in imported fenugreek seeds—the strain had acquired the genes to produce Shiga toxins.
Mycoplasma in New Zealand dairy cows: While not unusual in cattle, the incident reported in August marks the pathogen’s first appearance in cows in New Zealand, a country known for strict standards on agricultural hygiene. The microorganism is not harmful to people, but can drastically impact livestock herds.
Listeria monocytogenes in food sources: Listeria monocytogenes causes fewer but more serious incidence of food poisoning due to a higher death rate compared to Salmonella and Campylobacter. Whereas Listeria has been historically associated with dairy and ready to eat cooked meat products, recent outbreaks have been associated with fruit, and the FDA, CDC and USDA are conducting a joint investigation of outbreaks in frozen as well as in fresh produce.
Listeria in cantaloupe: In 2011, one of the worst foodborne illnesses recorded in the United States killed 20 and sickened 147, from Listeria monocytogenes that was found in contaminated cantaloupes from a farm in Colorado. The outbreak bloomed when normal background levels of the bacteria grew to deadly concentrations in multiple locations, from transport trucks to a produce washer that was instead designed for potatoes.
The outbreaks underscore the fundamental need to have a robust food safety program. Bacteria can colonize many different locations and the opportunity is created by a change in processing methods and/or consumer use or misuse of products. So robust risk assessment and preventative QA procedures need to be frequently reviewed and supported by appropriate surveillance methods.
Food safety and public health agencies like the European Food Safety Authority (EFSA) or the CDC have employed a wide range of detection and identification tests, ranging from pulse field gel electrophoresis (PFGE), traditional cell culture, enzyme immunoassay, and the polymerase chain reaction (PCR). In the case of Germany’s fenugreek-based E. coli outbreak, the CDC and EFSA used all these techniques to verify the source of the contamination.
These tests have certain advantages and disadvantages. Cell culture can be very accurate, but it depends on good technique and usually takes a long time to present results. PFGE provides an accurate DNA fingerprint of a target bacteria, but cannot identify all strains of certain microorganisms. Enzyme immunoassays are precise, but can produce false-positive results in certain circumstances and require microbiological laboratory expertise. PCR is very quick and accurate, but doesn’t preserve an isolate for physicians to test further for pathogenic properties.
Identification of the pathogens behind foodborne contamination is crucial for determining treatment of victims of the outbreak, and helps public health officials decide what tools are necessary to pinpoint the outbreak’s cause and prevent a recurrence. Rapid methods such as the polymerase chain reaction (PCR), which can quickly and accurately amplify DNA from a pathogen and make specific detection easier, are powerful tools in our efforts to maintain a safe food supply.
Recently, scientists and a third-party laboratory showed that real-time PCR assays for STEC and E. coli O157:H7 could detect E. coli O121, O26 and O157:H7 in 25-g samples of flour at levels satisfying AOAC method validation requirements. The results of the study demonstrated that real-time PCR could accurately detect stx, eae and the appropriate E. coli serotype (O121, O26 or O157:H7) with no statistical difference from the FDA’s Bacteriological Analytical Manual (BAM) cell culture method.
Agencies like the World Health Organization and CDC have repeatedly stated that historical records of food poisoning represent a very small percentage of true incidents occurring every year worldwide. Many of today’s most common food pathogens, like Listeria monocytogenes, E. coli O157:H7 or Campylobacterjejuni, were unknown 30 years ago. It’s not clear yet if unusual sources of contamination arise from increasing vigilance and food safety testing, or from an increasingly interdependent, globally complex food supply. No matter the reason, food producers, processors, manufacturers, distributors and retailers need to keep their guard up, using the optimum combination of tools to protect the public and fend off food pathogens.
Almond Board of California (ABC) tackled food safety head-on in the wake of emerging Salmonella concerns in the early 2000s. Conventional wisdom of the time suggested that low-moisture foods like almonds presented a minimal threat, but rather than simply accepting this, ABC engaged in research to better understand the risks. The resulting best practices and groundbreaking mandatory pasteurization program developed by ABC remain the gold standard for other sectors—and drive continued food safety and quality efforts for California Almonds.
In 2017, ABC marked the 10-year anniversary of its mandatory almond pasteurization program – and, most importantly, 10 years free of Salmonella recalls and outbreaks attributed to California Almonds. The almond industry is proud of its unified efforts over the last decade, as well as the food safety record we’ve been able to achieve. However, the work to protect and improve food safety and quality continues. Looking back at our initiatives and successes reminds us of how important this work is and drives our exploration of what’s next.
Understanding and Addressing the Risk
Outbreaks of Salmonella in 2001 and 2004 raised questions and concerns about food safety and quality across industries. For California Almonds, one of the biggest challenges was determining the true level of risk. The easy answer seemed to be that risk should be low, that, based on accepted conventions of the time, pathogens should not be able to grow in almonds and other low-moisture foods. However, ABC investigated further and quickly realized that the pathogen could present a problem. The organization decided to take action and tackle Salmonella and other potential threats.
In collaboration with food safety experts and research partners, ABC began research in 2001 to better understand the prevalence and concentration of contamination in almonds, conducted in tandem with efforts to develop strategies for contamination control. ABC was able to gather enough survey data over the course of several years to show that Salmonella was indeed present in about 1% of the almonds tested at very low concentrations. This data was fed into ABC’s risk assessment work, which enabled identification of appropriate performance criteria for ensuring consumer safety (>4-log reduction).
At the same time, ABC also worked to identify effective processing technologies and the best means of validating them. A technical expert review panel was assembled to help ABC develop a plan, assess research needs, establish standards and create guidelines for the industry. Extensive work went into determining how to validate equipment, including the determination of an appropriate surrogate (non-pathogenic microorganisms) that could be used in lieu of Salmonella in the plant. Concurrently, researchers worked to determine the specific time and temperature combinations needed for a >4-log (and 5-log) reduction for a range of pasteurization processes, including oil roasting, blanching and dry roasting, some steam processes and PPO processing. ABC and partners invested significant time and effort into this research, which culminated in the development of the groundbreaking mandatory pasteurization program for Salmonella reduction, and validation guidelines.
Process Implementation and Ongoing Education
Voluntary compliance with the pasteurization program began in 2004, well in advance of September 2007, when it became mandatory. By that time, pasteurization was established as the industry norm and laying the groundwork for ongoing food quality and safety efforts. Today, ABC has more than 1 billion pounds of validated pasteurization capacity for processes that maintain the raw characteristics of almonds, including steam, moist heat and propylene oxide (PPO). It also has close to 1 billion pounds of validated capacity for processes such as dry roasting, oil roasting and blanching. All reduce the level of potential contamination in almonds without diminishing the product’s quality, nutritional value or sensory qualities (taste and crunch).
ABC also developed a comprehensive round of updates to recommended food safety practices, creating a powerful program with tools that help growers and processors achieve their desired results. These tools include Good Agricultural Practices, Good Manufacturing Practices, HACCP guidelines and Pathogen Environmental Monitoring resources.
In total, ABC has made a $5 million investment in food quality and safety research and validated more than 200 treatment processes, to date. It remains committed to this mission, maintaining close connections with the scientific and regulatory communities to stay current on food safety in the broader context as well as issues specific to California Almonds. All relevant insights and information are disseminated to growers and processors in the form of clear, practical resources, including print publications and digital communications, and workshops and one-on-one field trainings.
What’s Next: Research, Tech and Regulatory Practices
The mandatory pasteurization program is now well established, but it isn’t static – ABC continues to stay on top of the latest methods, regulations and needs impacting California Almonds. Industry investment continues to increase, particularly in processes that maintain the raw characteristics of the product. And, while much information regarding processes and technologies are company-specific and confidential, equipment manufacturers continue evolving and growing their offerings, with a particular focus on maximizing almond quality and throughput.
On the regulatory side, FSMA continues to roll out for growers and processors. ABC helps growers and other stakeholders understand which rules apply, what actions to take to ensure compliance and when specific requirements come into effect for different operations, with FSMA-related resources, Preventative Controls and Produce Safety trainings and timely information available online. Many processors and non-farm huller/shellers started 2018 already meeting FSMA Preventive Control requirements, but the number of impacted orchards and huller/shellers expanded in January as the Produce Safety rule came into effect. At this point, the almond industry and the larger community of food and beverage industries have had time to assess the impact on their stakeholders and take action to ensure FSMA compliance.
FSMA reflects the evolving role of FDA in ensuring food safety. Traditionally, FDA has taken a reactive approach to food safety. The agency now has the authority to investigate farms and facilities regularly to ensure food safety regulations are followed. For the first time, growers and huller/shellers falling under the farm definition may be audited by FDA or FDA-designated agencies. While some growers may choose the exemption option, ABC encourages almond growers to understand the rule’s requirements and develop food safety plans appropriate to their farms. It will be new and uncertain territory for some, but with the FDA’s proactive approach, staying ahead of the curve on food safety and quality will be beneficial.
Currently, almonds are the only tree nut with a mandatory pasteurization program and defined performance criteria accepted by FDA. They have paved the way for validation of other tree nuts, and those industries should also consider implementing appropriate preventive controls for Salmonella. ABC’s work can be considered a road map for other nuts and low-moisture foods, but what works for almonds will not always work for other foods. Research specific to each type of nut needs to be conducted to uncover pathogen prevalence and concentration, as well as pathogen/surrogate resistance to various processes. We will continue to be proactive, as well, evaluating current practices and engaging in research to improve how we understand and control microbial contamination in almonds.
Even with a track record to take pride in, the responsibility and work of food quality and safety never end. We will continue to update and evolve programs, not only as a function of compliance, but to protect the almond customers who support us every day.
FDA and the American Medical Association (AMA) have joined forces to release continuing medical education videos for doctors about foodborne illness. FDA and AMA felt that the globalization of the food supply as well as the growth of foodborne pathogens necessitated more medical education and patient counseling on foodborne illness.
“These changes create a need for physicians to guide patients in protecting themselves from foodborne illness, especially those who are among the most vulnerable to serious consequences and who are most likely to be in a physician’s care: the very young whose immune systems are not yet fully developed; individuals whose immune systems are weakened by pregnancy, age, chronic conditions like diabetes, cancer and HIV/AIDS; and persons with organ transplants taking immuno-suppressive medications,” according to an FDA release.
“As more people gain access to and ingest cannabis products, it’s only a matter of time before food safety becomes a primary concern for producers and regulators,” says Steven Burton, CEO and founder of Icicle Technologies, Inc. Without federal regulation, there are so many questions about the food safety hazards associated with the use of cannabis in food products. In an article published in Food Safety Tech’s sister publication, Cannabis Industry Journal, Burton discusses the Top Four Safety Hazards for the Cannabis Industry, which includes pathogenic contamination from pests and improper handling.
Rich Products Corp. recalled 3.420 pounds of ready-to-eat beef meatball products over concerns that they may be adulterated with Listeria monocytogenes. The recalled products, which were produced on December 17, 2017, include 36-lb cases that contain six bags of “Member’s Mark Casa Di Bertacchi Italian Style Beef Meatballs with a “best by” date of December 17, 2018. The meatballs were shipped to distributors in the South, including Alabama, Florida, Mississippi, North Carolina, Texas and Virginia. The issue was discovered on January 24 when FSIS was notified by Rich Products that it shipped adulterated products into commerce. More information about the meatball recall is available on USDA’s website.
This website uses cookies so that we can provide you with the best user experience possible. Cookie information is stored in your browser and performs functions such as recognising you when you return to our website and helping our team to understand which sections of the website you find most interesting and useful.
Strictly Necessary Cookies
Strictly Necessary Cookies should be enabled at all times so that we can save your preferences for these cookie settings.
We use tracking pixels that set your arrival time at our website, this is used as part of our anti-spam and security measures. Disabling this tracking pixel would disable some of our security measures, and is therefore considered necessary for the safe operation of the website. This tracking pixel is cleared from your system when you delete files in your history.
We also use cookies to store your preferences regarding the setting of 3rd Party Cookies.
If you visit and/or use the FST Training Calendar, cookies are used to store your search terms, and keep track of which records you have seen already. Without these cookies, the Training Calendar would not work.
If you disable this cookie, we will not be able to save your preferences. This means that every time you visit this website you will need to enable or disable cookies again.
Cookie Policy
A browser cookie is a small piece of data that is stored on your device to help websites and mobile apps remember things about you. Other technologies, including Web storage and identifiers associated with your device, may be used for similar purposes. In this policy, we say “cookies” to discuss all of these technologies.
Our Privacy Policy explains how we collect and use information from and about you when you use This website and certain other Innovative Publishing Co LLC services. This policy explains more about how we use cookies and your related choices.
How We Use Cookies
Data generated from cookies and other behavioral tracking technology is not made available to any outside parties, and is only used in the aggregate to make editorial decisions for the websites. Most browsers are initially set up to accept cookies, but you can reset your browser to refuse all cookies or to indicate when a cookie is being sent by visiting this Cookies Policy page. If your cookies are disabled in the browser, neither the tracking cookie nor the preference cookie is set, and you are in effect opted-out.
In other cases, our advertisers request to use third-party tracking to verify our ad delivery, or to remarket their products and/or services to you on other websites. You may opt-out of these tracking pixels by adjusting the Do Not Track settings in your browser, or by visiting the Network Advertising Initiative Opt Out page.
You have control over whether, how, and when cookies and other tracking technologies are installed on your devices. Although each browser is different, most browsers enable their users to access and edit their cookie preferences in their browser settings. The rejection or disabling of some cookies may impact certain features of the site or to cause some of the website’s services not to function properly.
Individuals may opt-out of 3rd Party Cookies used on IPC websites by adjusting your cookie preferences through this Cookie Preferences tool, or by setting web browser settings to refuse cookies and similar tracking mechanisms. Please note that web browsers operate using different identifiers. As such, you must adjust your settings in each web browser and for each computer or device on which you would like to opt-out on. Further, if you simply delete your cookies, you will need to remove cookies from your device after every visit to the websites. You may download a browser plugin that will help you maintain your opt-out choices by visiting www.aboutads.info/pmc. You may block cookies entirely by disabling cookie use in your browser or by setting your browser to ask for your permission before setting a cookie. Blocking cookies entirely may cause some websites to work incorrectly or less effectively.
The use of online tracking mechanisms by third parties is subject to those third parties’ own privacy policies, and not this Policy. If you prefer to prevent third parties from setting and accessing cookies on your computer, you may set your browser to block all cookies. Additionally, you may remove yourself from the targeted advertising of companies within the Network Advertising Initiative by opting out here, or of companies participating in the Digital Advertising Alliance program by opting out here.