Tag Archives: spoilage

Marc Pegulu, Semtech
FST Soapbox

Increasing Food Safety and Spoilage Prevention in the IoT Era

By Marc Pégulu
No Comments
Marc Pegulu, Semtech

According to the Food and Agriculture Organization of the United Nations, it is estimated that nearly one third of the food produced (about 1.3 billion tons) globally is not consumed. To help tackle this billion-dollar problem, an innovative solution is being deployed to detect one of the key factors driving food waste: Spoilage due to fluctuations in temperature.

To get to the dinner table, food must travel great lengths to preserve that farm fresh quality. Refrigerated shipping units and storage facilities are essential to reducing bacteria growth and by using an automated smart-refrigeration solution, a food-safe environment can be maintained throughout the journey with little supervision. Traditional food temperature monitoring is reliant on staff to periodically check temperature levels and make adjustments as necessary. This process is not scalable, meaning that with a larger facility or an increased number of food displays, it becomes increasingly labor intensive and inefficient. If employees are preoccupied, periodic check-ins may be delayed or missed entirely, leading to gaps where temperature fluctuations are not addressed, opening the door for increased bacteria growth and food waste.

LoRa fights food waste
LoRa devices and LoRaWAN protocol are being integrated into smart refrigeration solutions to fight food waste. Image courtesy of Semtech.

To solve this issue, Internet of Things (IoT) sensors can be deployed in shipping vehicles, displays, refrigerators, and storerooms to provide accurate and consistent monitoring of temperature data. When a temperature fluctuation occurs, the sensors will send a signal to a low power, wide area network (LPWAN) gateway application. The information is then relayed to a network server, where it is routed to application servers or Cloud IoT services. The data is then processed and sent to the end user through a desktop or smartphone application. What’s more, in the event of a power outage, these long range, low power wireless enabled IoT devices are battery powered and consume minimal energy, allowing for consistent off-grid temperature tracking.

These connected devices can be found globally in a variety of use cases ranging from quick service restaurants to full service grocery stores, with an end goal of ensuring appropriate temperature levels for food. To support connectivity for these devices, an open network protocol is used to ensure the devices can be scalable and globally deployed. Two recent use cases where the long range, low power wireless devices and LoRaWAN protocol were used to actively monitor temperature fluctuations are Axino Solutions (Axino) and ComplianceMate.

Axino recently integrated LoRa devices and LoRaWAN protocol into its line of smart refrigeration solutions with the goal of combatting food waste. The solution combines sensor technology with automated data communication providing a substantial increase in measurement quantity and quality. Additionally, stores found a significant reduction in metering and operating costs after sensor deployment. This smart refrigeration solution has been globally deployed and is currently used by Switzerland’s largest supermarket chain, Migos. Axino’s sensors can be quickly installed, utilizing a magnet to attach to a refrigerator’s infrastructure. The sensors monitor temperature in real time, are accurate to one degree Celsius and can be pre-programmed to adjust refrigerator temperatures to ensure that food is stored in a safe environment. By having access to real time data and automatic temperature adjustment, supermarkets were able to eliminate human error, prolong shelf life and pass energy savings off to the customers.

The challenge for any wirelessly connected device is the presence of physical barriers that will block signals. Steel doors, concrete and insulation are some of the key considerations when developing a smart solution, especially in restaurants using large freezers. ComplianceMate partnered with Laird Connectivity and found that devices on a LoRaWAN-based network produces a more reliable signal than its Bluetooth counterpart. This IoT solution has been deployed in some of your favorite restaurant chains such as Shake Shack, Five Guys, Hard Rock Café, City Barbeque, and Hattie B’s and has already proved to be a huge asset. For instance, a sensor deployment saved $35,000 to $50,000 worth of inventory in a Hattie B’s location when downtown Nashville experienced a sudden power outage in 2018. The LoRa-based alert system immediately notified store management, allowing them to act quickly and prevent food spoilage.

Reducing global food spoilage is a monumental task. From farms to grocery stores and restaurants, technology must play a critical role, ensuring food remains at a safe temperature, preventing unnecessary spoilage. In the era of connectivity, businesses will turn to LoRa-based IoT deployments for its flexibility, durability and ability to provide real-time information to employees and decision makers to not only maintain strict industry standards in food safety, but to also pass savings on to their valued customers.

#m, Petrifilm Lactic Acid Bacteria Count Plate

Lactic Acid Bacteria Test First to Earn Independent Validation

#m, Petrifilm Lactic Acid Bacteria Count Plate

The Petrifilm Lactic Acid Bacteria Count Plate is the first commercial method of its kind to win validation from a third-party scientific organization, the AOAC Research Institute.

#m, Petrifilm Lactic Acid Bacteria Count Plate
3M’s Petrifilm Lactic Acid Bacteria Count Plate

Launched last August, the ready-to-use plate streamlines the testing process for lactic acid bacteria spoilage organisms. By assessing the bacterial levels acceptable for foods, the test can help companies extend product shelf life, reduce waste (the plates produce 66% less waste by weight and volume compared to certain agar methods), and potentially minimize recalls by allowing them to modify processing conditions or change cleaning and sanitation procedures. The test also provides accurate results in a shorter timeframe.

The AOAC Performance-Tested Method, Certificate #041701, is intended for a variety of foods (lactic acid bacteria is a concern for manufacturers of foods such as meat, fish, poultry, processed foods, produce, dairy products, dressings and sauces). Manufactured by 3M, the plate was tested on an environmental surface and a variety of food matrices as part of the validation process.

Phil Coombs, Ph.D., Weber Scientific
In the Food Lab

Rapid Detection of Spoilage Organisms: The Forgotten Bad Guys?

By Phil Coombs, Ph.D.
No Comments
Phil Coombs, Ph.D., Weber Scientific

As rapid microbiology methods have been increasingly adopted by the food industry during the past 30 years, much emphasis has been placed on the detection of foodborne pathogens and  reducing test times as much as possible. Novel methods such as PCR, along with other molecular approaches, have done much to find these organisms more quickly and identify the source of an outbreak. Quite rightly so: We all have to eat, and we all prefer to eat safe food.

What is often forgotten, however, and what has been less fashionable in the development of novel methods, is the impact of spoilage organisms on the economics of food production and the lack of more sophisticated methods to detect them.  While media headlines may scream “Salmonella outbreak affects hundreds!”, the same outlets are less likely to report how much food is thrown away on any given day because of mold growth. “Penicillium spoils bread” is hardly an attention grabber on the 6 o’clock news.

A closely–related issue is that of food wastage, which together with spoilage accounts for billions of dollars of food that is thrown away. Estimates are in the region of $29–35 billion per year, and that doesn’t take into account the billions of dollars of wasted produce because of cosmetic imperfections—the so-called “ugly” fruit and vegetables that are still safe and nutritious to eat. In other estimates, it is suggested that in U.S. landfills, 21% of the contents are comprised of wasted food.

Another source of the problem is the confusion created by date labels–“best by”, “use by”, “sell by”.  What do they really mean? This has become such an issue that Walmart is leading an effort, spearheaded by Walmart’s VP of Food Safety, Frank Yiannas, to rationalize date labels so that consumers are far less likely to throw away perfectly wholesome food. In this aspect, he has worked closely with the Institute of Food Technologists, the Grocery Manufacturers Association and the Food Marketing Institute to address the problem.

The amount of waste and spoilage has reached almost scandalous proportions and the issue must be addressed, as the planet’s human population is estimated to grow to 9–10 billion by the year 2050. Improved agricultural practices and biotechnology will help to improve yields and increase the food supply, but greater efforts must be made to reduce wasting the food that is produced.

Weber Scientific
The PCR Yeast and Mold Qualitative test is distributed by Weber Scientific in North America.

In the overall context of facing these challenges, new technologies are being developed. One such technology is a four-hour PCR Yeast and Mold Qualitative test, manufactured by Germany-based Biotecon, for use in dairy products. Genetic methods are typically associated with identifying bacterial and viral pathogens. But the same approach may be taken with groups of microbes responsible for spoilage, if there is a unique gene sequence common to the target organisms.

Typical test times for yeast/molds are historically five days, although more recently incubation times have been reduced to three days with some new “rapid” plating media. Still, this is a relatively long time compared to four hours. And it is worth noting that the PCR Yeast and Mold test is a “true” four-hour test, as it does not require any pre-enrichment.

The protocol follows a standard PCR protocol for DNA extraction and amplification with an important inclusion—a treatment step that allows discrimination between viable and non-viable organisms. Another important aspect is the inclusion of UNG (Uracil-N-Glycosylase), which greatly reduces the chance of cross-contamination between one sample and the next.

The method is remarkably robust. 100% specificity has been demonstrated with more than 300 strains of yeasts and molds representing 260 species covering all the phylogenetic groups. Conversely, 100% exclusivity has been shown against 60 strains of non-targets—comprised of microbes typically found in similar ecological niches; plant DNA; and animal DNA from human, mouse and canine sources. Sensitivity of the method for yeasts/molds is 101 – 102 cfu/g.

The method is also quantitative, and PCR cycle threshold times can be very closely correlated with plate counts on agar media. Thus, once a standard curve is generated, subsequent samples need only be tested by this new PCR method. Equivalent counts are then determined from the standard curve.

The rapid detection of yeast and molds is a much-needed analytical technique for the dairy industry. For producers of yogurt and similar fermented milk product with a typical shelf-life of 60 days, having the ability to release product to market four days earlier will help with operational efficiency. More importantly, knowing early on of any possibility of product spoilage will help deliver superior product to consumers. The method won the Institute for Food Technologists’ Innovation Award, with one of the judges commenting, “a four-test versus five days for spoilage organisms is a major breakthrough.”

In view of the level of wastage and spoilage that currently occurs, this new PCR method is a step along the way to using more sophisticated methods for the detection of the organisms responsible. Guardians of the food supply should see this as an important development.

PCR Test, weighing milk powder

Spoil No More: Rapid Test for Dairy Products Goes Beyond Detecting Microbes

By Maria Fontanazza
No Comments
PCR Test, weighing milk powder

Detecting yeast and mold is one of the most time consuming parts of the testing process for dairy products. With more pressure to move products that have a short shelf life out the door as quickly as possible, time really is money. Having a rapid, real-time test that enables companies to make immediate production decisions can provide a significant advantage. “[This technology] brings test time within the same timeframe as other microbiology tests, so a test for yeast and mold is no longer the outlier. That’s a huge savings right there,” says Phil Coombs, product specialist at Weber Scientific.

biotecon_diagnostics_starprep
Weber Scientific was one of three recipients of the Food Expo Innovation Award on July 17, 2016 at the IFT Annual Meeting in Chicago.

Coombs is referring to Weber Scientific’s recently released PCR Yeast and Mold Quantitative Test, which has been validated for finished dairy products. The company was asked by Germany-based Biotecon Diagnostics, the creator of the newly developed PCR method, to be its partner in introducing the test to the U.S. market. The technology reduces testing time for yeasts and molds from five days to four hours or less—from sample prep to the time-to-result, with no pre-enrichment required. “We make a big deal out of this, because sometimes [companies] with a pathogen test will say they have a four-hour test but it’s not truly, from start-to-finish, a four-hour test—you have to do some form of pre-enrichment, and so it’s a 24–48 hour test,” says Coombs. “When looking at fermented milk product like yogurt, it might have a shelf life of about 50 days. There’s much more time for the yeast and mold (because they’re typically slower growing organisms) to get busy and spoil the product. Yeast and mold can tolerate the lower pH, so that’s been the biggest sector of interest so far.”

One of the features of the technology is its ability to protect against false-negative results from non-viable DNA and false-positives from previous PCR test runs, which greatly reduces the chances of cross-contamination as well.

PCR Test for dairy products
The PCR Yeast and Mold Quantitative Test conducts analysis on milk powder. Image courtesy of Weber Scientific.

Achieving a shorter time-to-result means that if a company uncovers an issue, it can take immediate remedial action rather than waiting several days. This can have a big economic impact on production and warehousing, along with releasing product into commerce and distribution, especially when dealing with products that require refrigeration. In addition, the PCR test goes beyond detecting microbes that will spoil fermented milk products and offers advantages in the broader context of reducing food waste and spoilage. “It will be attractive to many companies that are developing a broad range of sustainability measures,” says Fred Weber, president of Weber Scientific. “And to cut down on food waste at the consumer level is a big deal.”

The company expects AOAC approval next year.