Tag Archives: spoilage

Rodrigo Malig
Ask The Expert

Why Customized Food Safety Programs Featuring AI and Molecular Testing Are Essential

By Food Safety Tech Staff
No Comments
Rodrigo Malig

Everyone understands the importance of a robust food safety program. It should ensure the safety of the product and environment, backed by solid, traceable data. The food industry is vast, stretching from the farm all the way to our plates, and includes a diverse array of foods and drinks. Different segments of this industry have specific needs, whether it’s unique spoilage tests or specialized predictions based on distinct data. Unfortunately, current services haven’t delivered a trustworthy solution for these needs.

Rodrigo Malig is the Chief Product Officer at TAAG Genetics. He oversees both the artificial intelligence and molecular diagnostic teams. In this column, Rodrigo discusses the crucial roles of AI and molecular testing in crafting a reliable, tailored solution for food safety.

What are common deficiencies in current food safety and quality programs?

Malig: Common shortcomings in Food Safety and Quality programs (and frustrations for hardworking FSQA professionals) include:

Lack of Customization: Many programs don’t adapt or customize to specific industry needs.

Routine Sampling Issues: Environmental sampling is often random, lacking intelligent risk-based criteria. There’s also an insufficient adaptive process after each sampling cycle.

Paper files
Relying on paper files makes keeping track of data, trending it and analyzing it more difficult and time consuming.

Testing Targets: The targets for environmental and finished product testing are often insufficient. For instance, industries need specific tests for spoilage microorganisms, but many don’t have access to these tests and rely instead on general aerobic plate counts, and yeast and mold.

LIMS (Laboratory Information Management System) Limitations: These systems often don’t offer accurate digitized mapping, customization or ability to adapt, leading them to inaccurately represent a facility or its changing needs.

Outdated Methods: Some programs still rely on outdated technologies and methods. Let’s take plate counts for example. There’s a focus on mere quantitative results without the specificity of what those organisms are. This prevents facilities from taking precise corrective and preventive actions. Additionally, we all know plate counts can be time consuming with long incubation times, have limited sensitivity, lack genetic information, require manual labor (thereby creating additional risk for contamination) and increase overall costs. It is essential to determine when plate counts need additional support or substitution, such as with PCR (Polymerase Chain Reaction).

Comparison to FDA Standards: Many confirmation methods are inferior compared to the FDA’s Whole Genome Sequencing.

PCR Kit Issues: When using PCR, many kits test for only a single microorganism. This limitation requires multiple tests to be run, leading to increased turnaround times and costs.

Traceability Concerns: A significant deficiency is the lack of traceability in many programs, requiring additional documentation to be performed on paper.

Incomplete data and analysis: Antiquated data management systems result in insufficient data collection and digitization. Many in the industry still manually write on paper or use Excel spreadsheets, which makes keeping track of data, trending it and analyzing it more difficult and time consuming.

Reactive and not predictive: Because of the deficiencies detailed above, food safety programs become reactive and insufficient to address risk.

How can we improve current food safety and quality programs?

Malig: An improved food safety and quality program must become predictive (and not reactive), by embracing and implementing technology featuring customization, molecular testing and AI. Below is a basic checklist for food companies to follow:

Data analysis smartphone
An ideal food safety and quality program should be digital, implement artificial intelligence and molecular testing, be comprehensive, and most importantly be simple and mobile!

Customized Software & Testing: Utilize software and tests tailored to your unique requirements.

Advanced Environmental Sampling: Embrace sampling that’s customized, risk-based, predictive and adaptive. Employ digitization and AI to efficiently map, record, analyze and predict sampling schemes. This system should also adapt after each cycle and accommodate changes in the environment, equipment and processes.

Molecular Testing: Polymerase Chain Reaction (PCR) testing is a molecular biology technique with several advantages, including:

  • Sensitivity: PCR is highly sensitive and can detect very small amounts of genetic material (DNA or RNA) in a sample. This makes it effective for detection even when the pathogen is present in low concentrations.
  • Specificity: PCR is highly specific, meaning it can accurately identify and differentiate between different microorganisms or genetic variants. This specificity reduces the likelihood of false-positive results.
  • Speed: PCR can provide results relatively quickly, often within a few hours, depending on the type of PCR used (e.g., real-time PCR or RT-PCR). This rapid turnaround time is crucial for time sensitive decisions in the food industry.
  • Cost: PCR can be cost efficient, especially with multiplex PCR kits that detect multiple pathogens in a single reaction, which essentially cuts time, labor, use of lab equipment and space, and overall cost.

Industry-Specific Microorganism Testing: Ensure you’re testing for microorganisms relevant to your industry, processes and products. This is especially crucial if your products are susceptible to spoilage by specific microorganisms.

Adaptive LIMS: Your Laboratory Information Management System (LIMS) should be both customizable and adaptive. It should digitally represent your facility with accuracy and adapt to any changes or needs.

Dynamic Microbiological Programs: Move away from reactive and repetitive testing schemes. Most current microbiological programs tend to test the same samples repeatedly. With the help of AI algorithms, we can now implement preventive and risk-based microbiological programs.

This real-life case study illustrates how a Fortune 100 Company implemented the solutions above to improve their food safety and quality program.

TAAG Contact Us

 

Emily Newton, Revolutionized Magazine

6 Ways IoT Asset Tracking Ensures Safe Distribution and Better Traceability

By Emily Newton
No Comments
Emily Newton, Revolutionized Magazine

Internet of Things (IoT) sensors are being used in industries across the spectrum, and their potential is far from being realized. The data provided via IoT asset tracking technologies, in particular, can enhance traceability and product integrity, leading to safer food and reducing costly losses. Following are six ways IoT tracking sensors support food safety, traceability and accountability.

Vendor Compliance

Adulteration occurs more often in the supply chain than any professional cares to admit. Some experts estimate it has a $50 billion annual impact on the food industry. Whether motivated by financial gain or product shortages, opportunistic intermediaries will take advantage of poor food traceability and make substitutions, dilutions or falsifications.

To prevent bringing adulterated products to market and keep consumers safe, manufacturers must hold their third-party vendors accountable at every stage of the distribution process, and IoT asset tracking sensors can help. They have the ability to record shipment movements in real time, so companies can ensure that their products and raw materials arrive and remain in the right places at each step in the chain.

Further, manufacturers can reduce the chances of product tampering by using IoT sensors that alert you when someone damages packaging. Bad actors are much less likely to commit food fraud when they know highly sophisticated technology is monitoring their actions and movements.

Damage Detection

Food products, especially those in the cold chain, can bruise, break and flatten relatively quickly, causing financial losses. For instance, grain loses significant value when damaged due to improper handling. Through a combination of IoT sensors and sensing nodes that can track the condition of products and provide relevant, real-time updates, companies can ensure their shipments stay intact throughout distribution and transportation.

Theft Reduction

Cargo theft is a significant problem that’s relatively new to the food industry. According to the FBI, it costs supply chain vendors and retailers up to $30 billion annually. While thieves have historically targeted electronics or high-cost imports, food inflation is making food products a top target as of 2023.

Industrial IoT sensors improve food traceability by tracking a shipment’s movement through the supply chain. They can provide real-time location data or update food-manufacturing professionals when the product reaches a particular destination. Companies can use this data to pinpoint sources of cargo theft, delays or mishandling, increasing product safety and reducing loss.

Spoilage Detection

Spoilage claims 33% of food products manufacturers produce, resulting in over $1 trillion in losses annually. This figure probably isn’t surprising for professionals working in the cold chain, as transportation condition management is incredibly complex and expensive.

Even if food appears fine for human consumption, undetected issues can be catastrophic down the line. A single recall costs a food company over $10 million on average, not accounting for lost sales or reputational damage.

With IoT asset tracking, industry professionals can monitor temperature, humidity and chemical compounds to improve the integrity of their products and ensure safe distribution. They can place sensors inside their vehicles or in packaging to monitor all changes.

Since these sensors provide a complete temperature and humidity account, professionals can even collect data for future use to forecast potential losses when conditions become abnormal. This allows companies to take action quickly to prevent spoilage, dramatically reducing the chances of a recall.

Enhanced Data Collection

An IoT sensor utilizing radio frequency identification (RFID) can collect a massive amount of data on distribution and transportation conditions that industry professionals can gather and store for future use. This information provides insights into route optimization and/or sources of contamination. With the addition of artificial intelligence, these sensors can maximize food traceability by validating everything passing through a gate.

If retailers wish to make some of this information available to end users, they can publish it or use specialized barcodes. Customers will get to review the origin of the raw materials and products, providing increased awareness of where their food comes from and the path it took to get to their store.

Faster Traceability

One in six people every year become sick due to a foodborne illness. It is up to manufacturers, distributors and retailers to ensure product quality and prevent these illnesses. When outbreaks do occur, it is up to manufacturers—both morally and legally—to trace that product and remove it before others are affected.

Luckily, IoT devices meet all the necessary regulatory criteria. RFID and other technologies can trace products in real time and alert the relevant parties of any significant changes. For example, they could track a perishable produce shipment and notify retailers and manufacturers of an extreme temperature spike.

Since these sensors can send out instantaneous alerts, nearby professionals can immediately respond before product becomes contaminated or spoils. Whether they are alerted to temperature fluctuations, suspected tampering or imminent spoilage, they can move quickly to address the concern.

IoT asset tracking is an innovative approach to common industry pain points. It addresses the food sector’s unique needs, taking perishables, food compliance and adulteration into account. With such significant food traceability improvements, manufacturers, distributors and retailers will have a much easier time coordinating their operations to increase safety, speed to market and the quality of their products.

Tom Woodbury

IoT Technology To Boost Safety, Compliance, and Efficiency: How to Get Started

By Tom Woodbury
No Comments
Tom Woodbury

Using Internet of Things (IoT)-based systems to automate temperature monitoring in refrigerators and freezers offers several benefits to restaurants. Following we look at how automated temperature monitoring works and how to get started with IoT.

How it Works: Automated Temperature Monitoring in Action

IoT-based systems use sensors to continuously monitor temperatures in refrigerators and freezers. These sensors are mounted inside the cold storage units in the warmest part of the unit, typically near the door or opening. The sensors collect temperature readings periodically and transmit the data to the cloud. As the data is recorded, the system can detect and report any anomalies.

If the conditions inside a refrigerator or freezer fall outside of predetermined thresholds, managers and staff can be notified (via text, email, or in-store apps) so they can take quick corrective actions outlined in their risk mitigation plans. In addition, the data that is recorded and stored can be analyzed to help identify trends that can be used to inform maintenance schedules and make operations more efficient. For example, the data may show how many years (on average) a refrigerator will last before it fails, so an organization can plan to buy replacement units before a failure occurs.

Benefits of Automated Temperature Monitoring

The positive impacts of automated temperature monitoring, enabled by IoT, are often realized in four key areas:

Food Safety. Maintaining a controlled environment in refrigerators, freezers, and other food storage areas reduces the risk of spoilage. By automating the monitoring process, organizations can keep a continuous watch on cold storage units and alert staff if temperatures rise above predetermined thresholds, allowing them to take immediate corrective action based on their risk mitigation processes. This is particularly beneficial in situations where a refrigerator door might be kept open too long, a freezer door is not entirely shut, or during a power outage.

Regulatory compliance. Regulatory agencies require reporting of food safety compliance. Typically, this is a human-driven process, with manual checks of thermometers and handwritten logs. IoT technologies that automatically monitor and record temperatures provide easy reporting of temperature levels over time. This streamlined process makes it much faster—and easier—to demonstrate compliance.

Efficiency. Automated temperature monitoring can make back-of-house restaurant processes more efficient by eliminating the manual “check and record” processes mentioned above. This frees up staff time to focus on other important tasks, such as serving customers.

Sustainability. By reducing food waste due to spoilage, automated temperature monitoring supports sustainability goals.

How to Get Started

With a wide range of IoT devices and systems available, selecting the right one can be overwhelming. How can you get started? First, identify your organization’s overall goals in incorporating the new technologies, and then review those high-level goals as you investigate options. Here are some criteria to consider:

Device selection: When selecting IoT devices, one size does not fit all. Different devices deliver varying degrees of functionality. Some devices support a single use case, while others have multiple sensors to enable diverse use cases for scalability. Another consideration is battery life. Seek devices that offer extended battery life by leveraging user-replaceable batteries designed for low temperature environments. Other features to look for include use of food-grade plastics and support for firmware updates over the air (FUOTA).

Wireless technology: To effectively penetrate dense refrigerator materials (typically metal), most food service operators are using the open standard, LoRaWAN due to its ability to penetrate walls and maximize battery life.

Data caching: In the event of an interruption in connectivity, you must know what the refrigerator or freezer temperatures were during the outage. Some devices and gateways can cache data and resend as soon as they reconnect, while others cannot. Temperature data caching is critical for applications related to food safety, so be sure to ask for this during the research and evaluation process.

Deployment capabilities: Deployments are complex, and a provider that can navigate deployments at scale is vital. It is important to look at each provider’s technology offerings, installation, and deployment capabilities.

There are many benefits to using IoT to deliver automated temperature monitoring, and these benefits extend beyond food safety to sustainability and improved efficiency. They key is to identify the right devices for your organization’s specific needs.

Emily Newton, Revolutionized Magazine
FST Soapbox

Level Up Safety with Food Packaging Automation Technologies

By Emily Newton
No Comments
Emily Newton, Revolutionized Magazine

Food packaging automation technologies can increase productivity and improve food safety. We highlight three key packaging technologies worth investigating.

1. Image-Based Sensors

Foreign objects in packaged foods are a key cause of recalls and can lead to both physical harm and reputational damage. Some companies are incorporating food packaging automation solutions that rely on cameras to detect foreign objects before products leave production facilities.

In one example, researchers from Ritsumeikan University in Japan used a tactile-based image sensor mounted on a high-resolution camera to look for hard objects, including shell and bone fragments, within soft foods. This technology found sub-millimeter foreign bodies and required only 10 seconds to scan a piece of food.

Some sensors can sort food, such as rice, based on appearance. If the rice does not meet specifications—or if a contaminant is detected—the device emits coordinated air puffs to blow the subpar product or contaminant into a reject bin.

Image-based sensors do not replace people from inspection processes. The goal is to boost quality control by combining advanced technology with human oversight. This allows food packaging plants to reduce the risk of unsafe consumables reaching the market.

2. Robots

Robots have been game-changers in food packaging automation. Statistics show that Chinese food and beverage industry clients purchased an estimated $196 million in robotic technology in 2022, with companies from the U.S. investing roughly $160 million in these technologies. These numbers have climbed since 2020, suggesting more company leaders are embracing robotics for their operations.

Companies that don’t have enough employees to handle the workload can compromise safety if they give workers more responsibilities than they can handle or force them to work too quickly. However, robots can ease some of that strain. One robotic top loader for wrapped food products processes up to 120 products per minute, depending on the type.

In another case, a food packaging plant had only 30 employees but needed to switch to 24/7 production to meet customer demand. Adding three collaborative robots, or cobots, to the workflow made it safe for the small team to ramp up activities without getting overwhelmed.

It can take food packaging plant leaders time and effort to figure out the best ways to bring robots into a facility. It helps to determine which tasks are most prone to errors and likely to result in injury. Alternatively, managers can ask line workers which duties feel the most cumbersome or dangerous.

Many employees are initially hesitant about working with cobots. They feel more positive and comfortable about these changes when they realize the machines supplement their work rather than replace it.

3. Upcycled Food Packaging

Food packaging automation has benefits that extend beyond the production environment. Singapore-based Alterpack uses automated equipment to turn spent grain into takeout containers and other types of packaging. The packaging is microwave and freezer-safe, and people can toss it into their compost heaps after use.

The company’s goal is to help reduce dependence on single-use plastic packaging. The process requires cleaning raw materials, mixing a specialty formula and molding it into desired shapes. Automation keeps these steps safe and consistent.

Other types of automation specific to food packaging focus on consumer safety. One project from the Fraunhofer Institute for Process Engineering and Packaging involved embedding packages of meat and fish with chemosensors to measure freshness. The sensors change color automatically when exposed to volatile compounds that indicate product spoilage. The visual indicator makes it easy for consumers, grocery store workers, and others to see when food is no longer safe to sell or eat.

Elsewhere, a team of researchers from Harvard University and Singapore’s Nanyang Technological University made a type of smart food packaging primarily constructed from corn protein. The packaging contains innovative nanoscale mesh fibers and natural antimicrobial compounds programmed to sense common kinds of bacteria in food. When the bacteria are detected, the packaging automatically sprays out tiny amounts of antimicrobials to keep food fresher and safe to eat for longer.

These are just some of the forward-thinking ways food packaging designers can incorporate automation into their production process. Options like these will likely become more widespread as more people experiment with what’s possible, spurring progress in food safety, productivity and waste reduction.

 

CJ Pakeltis, RizePoint
FST Soapbox

Food Businesses: Reduce Food Waste and Save Significant Money

By CJ Pakeltis
No Comments
CJ Pakeltis, RizePoint

After two years of COVID-19—and now an escalating Russia-Ukraine conflict—the failing supply chain is a pressing concern in the food industry. Exacerbating the supply chain issues is our excessive food waste problem. As supplies become more difficult and expensive to secure, we should be focusing more attention on reducing waste. Food businesses that proactively work to reduce food waste will save significant money, meet corporate sustainability goals and help the planet.

Food waste is estimated at between 30-40% of the U.S. food supply, which equates to an astonishing 133 billion pounds and $161 billion in waste, according to the USDA. In addition to discarded food, there is also considerable waste of labor, energy and other resources that go into producing, processing, transporting, prepping, cooking, storing and disposing of unused food.

Food waste occurs for many reasons, including:

  • Spoilage at every stage of the supply chain
  • Problems like mold or bacteria during harvesting, transporting, processing, etc.
  • Damage by insects, rodents, and other pests.
  • Equipment malfunction (such as faulty walk-in coolers).
  • Improper storage (e.g., not holding foods at proper temperatures).
  • Over-ordering, over-prepping, or cooking more than what’s needed, and tossing out the extras.

Many food businesses inadvertently practice wasteful behaviors. This is due, in large part, to the lack of accurate, comprehensive data. If operators don’t have accurate data about their inventory, sales patterns and forecasts, it can lead to food waste, which can be costly to your business and damaging to our planet.

At a time when every dollar counts—and the supply chain is strained—your organization should proactively work to reduce food waste. The following are some effective ways to accomplish this goal.

  • Adopt the right software. Integrated software is the best solution to eliminate wasted food, money and other resources. Today’s systems allow organizations to view sales patterns, track inventory, manage production, avoid overstocking, enhance food safety and quality, and determine areas of wastage. Tech solutions allow organizations to use data—not instincts—to make better, more profitable, less wasteful decisions.
  • Conduct a food waste audit. Food waste is bad for the environment as well as business margins. A food waste audit can help a company determine how much food is being wasted, as well as the type of foods not being used effectively. This practice can help companies address waste problems and adjust their inventory accordingly.
  • Implement sustainable strategies. It’s problematic—and wasteful—when retail locations receive large quantities of fresh foods and can’t sell it all before it spoils. Hannaford Supermarkets found a solution to this common conundrum. They have their trucks deliver smaller amounts of food more frequently—versus less frequent, higher volume deliveries. As a result, they are selling fresher produce with less waste.
  • Make waste reduction part of company culture. Train staff to reduce waste, and properly use, cook, package and store foods while always prioritizing waste reduction. Adopt a waste-not-want-not mindset and follow sustainable strategies that are practiced starting in the C-suite.
  • Donate surplus food. After learning that billions of pounds of food goes to waste in the United States while millions of people are going hungry, entrepreneur Jasmine Crowe created Goodr, a food waste management company that connects food businesses with a surplus of supplies to non-profit organizations that give it to the food insecure. Additionally, grocery chain Trader Joe’s is well-known for their generous food donation program. In just one year, the company donated $295 million worth of their unused products to food banks, feeding the hungry and eliminating a huge amount of waste.
  • Improve packaging. Our industry must create better packaging that effectively protects and preserves food throughout the entire supply chain cycle—and helps reduce waste. For instance, companies are experimenting with more compostable packaging, clearer use-by/expiration dates, easier-to-understand usage instructions, tips for storing leftovers, and ways to use some of the food without compromising the rest of the food in the package.
  • Reconsider portion size. Some restaurants offer smaller meals (i.e., half portions) to reduce waste. Food manufacturers are also providing smaller options, such as the single-serving Duncan Hines Perfect Size Cakes for customers who want just a small treat without having to waste an entire cake. Sabra Singles hummus, Good Culture cottage cheese, Kraft Mac and Cheese and other companies offer single serving containers, which means less waste.
  • Use every scrap. Vegetable peels, eggshells, coffee grounds, tea bags and other non-meat scraps can be used for compost, which is nutrient-rich and will go back into the earth to grow more food. Use the compost to grow your own herbs and produce or share it with local farmers and gardeners.
  • Consider other eco-friendly options. Sustainable organizations are taking our food scraps and recycling them into bioenergy, bioplastics and clothing. Investigate eco-friendly organizations in your area and donate your unused food to them to repurpose it. For instance, H&M’s Conscious collection uses silk-like fabric made from citrus juice by-products and discarded orange peels. Other clothing lines, cosmetics companies and other innovators are making sustainable products from food waste.

It is important to recognize that the food industry’s waste isn’t limited solely to food. The following are some additional eco-friendly practices that companies can implement.

  • Reduce plastic waste. Americans produce a whopping 42 million tons of plastic waste annually. Increasingly, companies are looking for eco-friendlier options. Footprint, a materials science company, is inventing and manufacturing plant-based solutions to replace plastic. This innovative company is working with food companies—including McDonalds, Costco and Conagra—to adopt plant-based solutions, eliminate short-term use plastic, reduce CO2 emissions, cut landfill waste, and reach corporate sustainability goals. Stonyfield Farm, known for their planet-friendly business practices, is making their yogurt cups from plants. In fact, the market for edible packaging is on the rise, and expected to grow by almost 5% by 2030. A growing number of food businesses are now relying on biodegradable and compostable packaging solutions instead of plastic. Are you one of them?
  • Pick the right partners. Select partners (e.g., suppliers, vendors, etc.) that are also focused on sustainability. Digital solutions can easily track supplier certifications to ensure that you’re sourcing from—and collaborating with—other companies that are committed to waste reduction and other eco-friendly business practices.
  • Focus on sustainability. It takes considerable energy to run equipment non-stop, so shut down non-essential equipment during slow times to save energy and money. Also, insulate your hot water pipes to decrease the amount of water your organization uses (and lower your heating needs and costs). Turn off the air conditioning and open windows. Use silverware instead of plasticware, and reusable towels instead of paper. Think of different ways to reduce waste throughout your organization and you’ll save money, resources, and the environment.

Prioritize waste reduction using these proven strategies. Remember that every little bit helps, and even the smallest changes will add up to a substantial difference over time.

Megan Nichols
FST Soapbox

COVID-19 Led Many Dairy Farmers to Dump Milk

By Megan Ray Nichols
No Comments
Megan Nichols

Much of the news coverage surrounding the COVID-19 pandemic mentions infection numbers and fatalities. Those are undoubtedly important for showing parts of the overall impact. However, it’s easy to overlook the ramifications felt by some professionals. One recent example concerns the instances of dairy farmers dumping milk.

Numerous Factors Contributing to the Problem

The pandemic drastically and dramatically disrupted life. Many of the associated changes affected milk producers, but perhaps not in the ways people expect. As schools closed and restaurants operated on delivery or a takeaway-only basis, the demand for milk typically consumed in the food and educational sector went down.

Consider, too, that the pandemic forced the closure of enterprises that did not necessarily serve large quantities of milk every day but still likely placed ongoing orders with suppliers. For example, a daycare center might give toddlers boxes of dairy beverages each day during snack time. Coffee shops often add milk to their lattes or set out bottles for people who want to put some in their coffee.

When coronavirus cases emerged in the United States, many people panicked and flocked to grocery stores for essentials. Milk is often one of the staples people buy before winter storms hit, and they wanted it to prepare for the pandemic, too. One Target store in New Jersey sold out of its entire stock of milk in only five minutes. Stores responded by imposing per-person limits on the product.

If the demand exists, what caused the milk surplus? Part of it boils down to a lack of space at milk processing plants. A related issue is that processors typically serve particular markets. One might cater to retail buyers while another primarily addresses needs in the food service sector. They lack the infrastructure to pivot and begin accepting milk orders from a new type of customer, particularly if the milk-based product is substantially different, like sour cream versus ice cream.

A First-Time Phenomenon

Farmers discarding milk is not unheard of, but it’s not something many producers do regularly. Andrew Griffith, a professor at the University of Tennessee, said that some farmers had to do it recently for the first time in careers spanning decades. He explained, “It’s not that [dumping] hasn’t occurred from farm to farm.” Adverse weather conditions can delay pickups, and unexpected supply spoilages might lead to too much milk.

“But we’re talking about a level of dumping that is not common at all. There [are] a lot of farmers that are experiencing dumping milk for the first time in their 30- or 40-year careers,” Griffith said in an article published on The Counter.

The highly perishable nature of milk poses another problem contributing to the milk surplus. That aspect hit dairy harder than some other types of agricultural goods. People could put grain into silos, but storage is more complicated for dairy products.

Any exposure to higher-than-recommended temperatures causes spoilage. The subsequent risk to consumers means farmers must throw it away. Cold storage facilities are essential for the dairy industry. Statistics from 2018 indicated an average of 10.67 cents per kilowatt-hour for energy consumption at commercial facilities. However, cold storage facilities operate 24/7, so their energy needs are often higher than those of other commercial buildings.

Cows, dairy, farms
The coronavirus is only one of the challenges likely to impact the dairy industry in the coming months and years. Dairy consumption has been trending down for years. (Pexels image)

The delicate nature of the product is another unfortunate aspect that may lead to dumping milk. If a processor has no room to accept the raw goods, there’s nowhere for them to go. In April The Wall Street Journal reported that in one week, producers threw out as much as 7% of the milk in the United States from that period. The same story highlighted how a specialty cheese factory saw sales of its chèvre and ricotta drop by 95% in one day.

Coping With Dairy Industry Fluctuations

The coronavirus is only one of the challenges likely to impact the dairy industry in the coming months and years. A Statista chart profiles the progressive decline of milk consumption in the United States. The average amount of milk per person in 1975 totaled 247 pounds. It plunged to 149 pounds by 2017.

There’s also the issue of people showing a growing preference for plant-based milk alternatives. One industry analysis tracked sales of traditional and oat milk during mid-March. Purchases for the first category rose by 32%, while oat milk sales soared by 476%. A potential reason for that huge increase in the latter category is that supermarkets sell shelf-stable milk alternatives. Those often stay in date for months when unopened.

People can get them in the refrigerated section, too, but they may have preferred not to as they cut down their shopping trips due to COVID-19. Consumers also noticed the increasing number of milk-like beverages made from hemp, hazelnuts and other options. If a person tries one and doesn’t like it, they may try a different option.

Despite those challenges, some dairy farmers anticipated favorable trends—at least before the coronavirus hit. Producers get paid per 100 pounds of milk. Katie Dotterer-Pyle, owner of Cow Comfort Inn Dairy, said 2013 was a particularly good year for the rates. Back then, farmers received about $30 for every 100 pounds, although the price has stayed at approximately $17 per 100 over the past two years.

When Might the Milk Surplus Ease?

This coverage emphasizes the lack of a quick fix for the dairy industry strain. As restaurants reopen, that change should help address the problem, but it won’t solve it entirely. Some enterprises refocused their efforts to better meet current demands. One Dallas-based plant that handles dairy products more than halved its output of cardboard milk cartons and increased production of whole and 2% milk for the retail sector. It is now back to normal manufacturing runs.

As mentioned earlier, though, many processors can’t make such changes. Dumping milk becomes a heart-wrenching practice for hard-working producers. Many tried to compensate by selling their least-profitable cows for slaughter or making feeding changes to reduce the animals’ production. Some private entities committed to purchasing milk from farms and getting it to food banks. Other analysts say the government should step in to help.

People in the farming community support each other with tips and reassurance, but most know they could be in for a long struggle. As supply chains recovered from the initial shock of COVID-19, most people stopped panic buying, and stores no longer set product limits. Things are moving in the right direction, but the impacts remain present.

A Complicated Issue

Many state leaders have let businesses reopen, and others are following. Any step toward a new kind of normal is a positive one that should gradually help the dairy sector. However, much of what the future holds remains unknown, mainly since this is a new type of coronavirus, and scientists still have plenty to learn about mitigating it.

Marc Pegulu, Semtech
FST Soapbox

Increasing Food Safety and Spoilage Prevention in the IoT Era

By Marc Pégulu
No Comments
Marc Pegulu, Semtech

According to the Food and Agriculture Organization of the United Nations, it is estimated that nearly one third of the food produced (about 1.3 billion tons) globally is not consumed. To help tackle this billion-dollar problem, an innovative solution is being deployed to detect one of the key factors driving food waste: Spoilage due to fluctuations in temperature.

To get to the dinner table, food must travel great lengths to preserve that farm fresh quality. Refrigerated shipping units and storage facilities are essential to reducing bacteria growth and by using an automated smart-refrigeration solution, a food-safe environment can be maintained throughout the journey with little supervision. Traditional food temperature monitoring is reliant on staff to periodically check temperature levels and make adjustments as necessary. This process is not scalable, meaning that with a larger facility or an increased number of food displays, it becomes increasingly labor intensive and inefficient. If employees are preoccupied, periodic check-ins may be delayed or missed entirely, leading to gaps where temperature fluctuations are not addressed, opening the door for increased bacteria growth and food waste.

LoRa fights food waste
LoRa devices and LoRaWAN protocol are being integrated into smart refrigeration solutions to fight food waste. Image courtesy of Semtech.

To solve this issue, Internet of Things (IoT) sensors can be deployed in shipping vehicles, displays, refrigerators, and storerooms to provide accurate and consistent monitoring of temperature data. When a temperature fluctuation occurs, the sensors will send a signal to a low power, wide area network (LPWAN) gateway application. The information is then relayed to a network server, where it is routed to application servers or Cloud IoT services. The data is then processed and sent to the end user through a desktop or smartphone application. What’s more, in the event of a power outage, these long range, low power wireless enabled IoT devices are battery powered and consume minimal energy, allowing for consistent off-grid temperature tracking.

These connected devices can be found globally in a variety of use cases ranging from quick service restaurants to full service grocery stores, with an end goal of ensuring appropriate temperature levels for food. To support connectivity for these devices, an open network protocol is used to ensure the devices can be scalable and globally deployed. Two recent use cases where the long range, low power wireless devices and LoRaWAN protocol were used to actively monitor temperature fluctuations are Axino Solutions (Axino) and ComplianceMate.

Axino recently integrated LoRa devices and LoRaWAN protocol into its line of smart refrigeration solutions with the goal of combatting food waste. The solution combines sensor technology with automated data communication providing a substantial increase in measurement quantity and quality. Additionally, stores found a significant reduction in metering and operating costs after sensor deployment. This smart refrigeration solution has been globally deployed and is currently used by Switzerland’s largest supermarket chain, Migos. Axino’s sensors can be quickly installed, utilizing a magnet to attach to a refrigerator’s infrastructure. The sensors monitor temperature in real time, are accurate to one degree Celsius and can be pre-programmed to adjust refrigerator temperatures to ensure that food is stored in a safe environment. By having access to real time data and automatic temperature adjustment, supermarkets were able to eliminate human error, prolong shelf life and pass energy savings off to the customers.

The challenge for any wirelessly connected device is the presence of physical barriers that will block signals. Steel doors, concrete and insulation are some of the key considerations when developing a smart solution, especially in restaurants using large freezers. ComplianceMate partnered with Laird Connectivity and found that devices on a LoRaWAN-based network produces a more reliable signal than its Bluetooth counterpart. This IoT solution has been deployed in some of your favorite restaurant chains such as Shake Shack, Five Guys, Hard Rock Café, City Barbeque, and Hattie B’s and has already proved to be a huge asset. For instance, a sensor deployment saved $35,000 to $50,000 worth of inventory in a Hattie B’s location when downtown Nashville experienced a sudden power outage in 2018. The LoRa-based alert system immediately notified store management, allowing them to act quickly and prevent food spoilage.

Reducing global food spoilage is a monumental task. From farms to grocery stores and restaurants, technology must play a critical role, ensuring food remains at a safe temperature, preventing unnecessary spoilage. In the era of connectivity, businesses will turn to LoRa-based IoT deployments for its flexibility, durability and ability to provide real-time information to employees and decision makers to not only maintain strict industry standards in food safety, but to also pass savings on to their valued customers.

#m, Petrifilm Lactic Acid Bacteria Count Plate

Lactic Acid Bacteria Test First to Earn Independent Validation

#m, Petrifilm Lactic Acid Bacteria Count Plate

The Petrifilm Lactic Acid Bacteria Count Plate is the first commercial method of its kind to win validation from a third-party scientific organization, the AOAC Research Institute.

#m, Petrifilm Lactic Acid Bacteria Count Plate
3M’s Petrifilm Lactic Acid Bacteria Count Plate

Launched last August, the ready-to-use plate streamlines the testing process for lactic acid bacteria spoilage organisms. By assessing the bacterial levels acceptable for foods, the test can help companies extend product shelf life, reduce waste (the plates produce 66% less waste by weight and volume compared to certain agar methods), and potentially minimize recalls by allowing them to modify processing conditions or change cleaning and sanitation procedures. The test also provides accurate results in a shorter timeframe.

The AOAC Performance-Tested Method, Certificate #041701, is intended for a variety of foods (lactic acid bacteria is a concern for manufacturers of foods such as meat, fish, poultry, processed foods, produce, dairy products, dressings and sauces). Manufactured by 3M, the plate was tested on an environmental surface and a variety of food matrices as part of the validation process.

Phil Coombs, Ph.D., Weber Scientific
In the Food Lab

Rapid Detection of Spoilage Organisms: The Forgotten Bad Guys?

By Phil Coombs, Ph.D.
No Comments
Phil Coombs, Ph.D., Weber Scientific

As rapid microbiology methods have been increasingly adopted by the food industry during the past 30 years, much emphasis has been placed on the detection of foodborne pathogens and  reducing test times as much as possible. Novel methods such as PCR, along with other molecular approaches, have done much to find these organisms more quickly and identify the source of an outbreak. Quite rightly so: We all have to eat, and we all prefer to eat safe food.

What is often forgotten, however, and what has been less fashionable in the development of novel methods, is the impact of spoilage organisms on the economics of food production and the lack of more sophisticated methods to detect them.  While media headlines may scream “Salmonella outbreak affects hundreds!”, the same outlets are less likely to report how much food is thrown away on any given day because of mold growth. “Penicillium spoils bread” is hardly an attention grabber on the 6 o’clock news.

A closely–related issue is that of food wastage, which together with spoilage accounts for billions of dollars of food that is thrown away. Estimates are in the region of $29–35 billion per year, and that doesn’t take into account the billions of dollars of wasted produce because of cosmetic imperfections—the so-called “ugly” fruit and vegetables that are still safe and nutritious to eat. In other estimates, it is suggested that in U.S. landfills, 21% of the contents are comprised of wasted food.

Another source of the problem is the confusion created by date labels–“best by”, “use by”, “sell by”.  What do they really mean? This has become such an issue that Walmart is leading an effort, spearheaded by Walmart’s VP of Food Safety, Frank Yiannas, to rationalize date labels so that consumers are far less likely to throw away perfectly wholesome food. In this aspect, he has worked closely with the Institute of Food Technologists, the Grocery Manufacturers Association and the Food Marketing Institute to address the problem.

The amount of waste and spoilage has reached almost scandalous proportions and the issue must be addressed, as the planet’s human population is estimated to grow to 9–10 billion by the year 2050. Improved agricultural practices and biotechnology will help to improve yields and increase the food supply, but greater efforts must be made to reduce wasting the food that is produced.

Weber Scientific
The PCR Yeast and Mold Qualitative test is distributed by Weber Scientific in North America.

In the overall context of facing these challenges, new technologies are being developed. One such technology is a four-hour PCR Yeast and Mold Qualitative test, manufactured by Germany-based Biotecon, for use in dairy products. Genetic methods are typically associated with identifying bacterial and viral pathogens. But the same approach may be taken with groups of microbes responsible for spoilage, if there is a unique gene sequence common to the target organisms.

Typical test times for yeast/molds are historically five days, although more recently incubation times have been reduced to three days with some new “rapid” plating media. Still, this is a relatively long time compared to four hours. And it is worth noting that the PCR Yeast and Mold test is a “true” four-hour test, as it does not require any pre-enrichment.

The protocol follows a standard PCR protocol for DNA extraction and amplification with an important inclusion—a treatment step that allows discrimination between viable and non-viable organisms. Another important aspect is the inclusion of UNG (Uracil-N-Glycosylase), which greatly reduces the chance of cross-contamination between one sample and the next.

The method is remarkably robust. 100% specificity has been demonstrated with more than 300 strains of yeasts and molds representing 260 species covering all the phylogenetic groups. Conversely, 100% exclusivity has been shown against 60 strains of non-targets—comprised of microbes typically found in similar ecological niches; plant DNA; and animal DNA from human, mouse and canine sources. Sensitivity of the method for yeasts/molds is 101 – 102 cfu/g.

The method is also quantitative, and PCR cycle threshold times can be very closely correlated with plate counts on agar media. Thus, once a standard curve is generated, subsequent samples need only be tested by this new PCR method. Equivalent counts are then determined from the standard curve.

The rapid detection of yeast and molds is a much-needed analytical technique for the dairy industry. For producers of yogurt and similar fermented milk product with a typical shelf-life of 60 days, having the ability to release product to market four days earlier will help with operational efficiency. More importantly, knowing early on of any possibility of product spoilage will help deliver superior product to consumers. The method won the Institute for Food Technologists’ Innovation Award, with one of the judges commenting, “a four-test versus five days for spoilage organisms is a major breakthrough.”

In view of the level of wastage and spoilage that currently occurs, this new PCR method is a step along the way to using more sophisticated methods for the detection of the organisms responsible. Guardians of the food supply should see this as an important development.

PCR Test, weighing milk powder

Spoil No More: Rapid Test for Dairy Products Goes Beyond Detecting Microbes

By Maria Fontanazza
No Comments
PCR Test, weighing milk powder

Detecting yeast and mold is one of the most time consuming parts of the testing process for dairy products. With more pressure to move products that have a short shelf life out the door as quickly as possible, time really is money. Having a rapid, real-time test that enables companies to make immediate production decisions can provide a significant advantage. “[This technology] brings test time within the same timeframe as other microbiology tests, so a test for yeast and mold is no longer the outlier. That’s a huge savings right there,” says Phil Coombs, product specialist at Weber Scientific.

biotecon_diagnostics_starprep
Weber Scientific was one of three recipients of the Food Expo Innovation Award on July 17, 2016 at the IFT Annual Meeting in Chicago.

Coombs is referring to Weber Scientific’s recently released PCR Yeast and Mold Quantitative Test, which has been validated for finished dairy products. The company was asked by Germany-based Biotecon Diagnostics, the creator of the newly developed PCR method, to be its partner in introducing the test to the U.S. market. The technology reduces testing time for yeasts and molds from five days to four hours or less—from sample prep to the time-to-result, with no pre-enrichment required. “We make a big deal out of this, because sometimes [companies] with a pathogen test will say they have a four-hour test but it’s not truly, from start-to-finish, a four-hour test—you have to do some form of pre-enrichment, and so it’s a 24–48 hour test,” says Coombs. “When looking at fermented milk product like yogurt, it might have a shelf life of about 50 days. There’s much more time for the yeast and mold (because they’re typically slower growing organisms) to get busy and spoil the product. Yeast and mold can tolerate the lower pH, so that’s been the biggest sector of interest so far.”

One of the features of the technology is its ability to protect against false-negative results from non-viable DNA and false-positives from previous PCR test runs, which greatly reduces the chances of cross-contamination as well.

PCR Test for dairy products
The PCR Yeast and Mold Quantitative Test conducts analysis on milk powder. Image courtesy of Weber Scientific.

Achieving a shorter time-to-result means that if a company uncovers an issue, it can take immediate remedial action rather than waiting several days. This can have a big economic impact on production and warehousing, along with releasing product into commerce and distribution, especially when dealing with products that require refrigeration. In addition, the PCR test goes beyond detecting microbes that will spoil fermented milk products and offers advantages in the broader context of reducing food waste and spoilage. “It will be attractive to many companies that are developing a broad range of sustainability measures,” says Fred Weber, president of Weber Scientific. “And to cut down on food waste at the consumer level is a big deal.”

The company expects AOAC approval next year.