COVID-19 has had a major impact on the food and beverage industry this year, contributing to everything from bare shelves and supply chain issues to changes in consumer behavior to plant shutdowns, and to historic grocery cost spikes. We continue to experience changes every day, along with challenges that must be overcome. Lessons from the last year can prepare us for the years ahead, but only if we learn to adapt and anticipate.
Nearly all parts of the supply chain have been impacted, from raw material sourcing and packaging shortages to manufacturing plant shutdowns to logistics capacity to bricks and mortar store operations to consumers. At the onset of the pandemic, major industry trade shows were cancelled and postponed, along with demos and in-person sales meetings, leaving the future of shelf resets with a dark cloud hanging above them. Staying in touch virtually with buyers and providing updates proved to be a best practice and will continue into 2021.
To keep things running smoothly on the manufacturing side, assets from some logistics providers were redeployed to where they were needed most, and with consumers dining more from home, the industry saw a huge move from food service to retail, which we will touch on a bit later. Moving into 2021, brands should ensure their raw materials and supply inventories, especially those that are imported, can cover any potential and unforeseen disruptions. It is critical to prepare well in advance of shortages or surges, specifically in at-risk chains.
Despite the attempts to mitigate against shortages, even the most well-known brands faced major out-of-stock issues and consumers turned to alternative, smaller brands. The shortages came from an increase in pressure from consumers stocking up on items, not from a lack of supply as many believed. Manufacturers increased hours and scheduled capacity on production lines to maximize efficiencies to keep up until things returned to normal. When possible, production lines were reconfigured to distance operators and shifts staggered to limit contact between teams. Senators even introduced the Food Supply Protection Act to help strengthen the chain, protect workers and reduce waste, as per the United States Senate Committee on Agriculture, Nutrition and Forestry. Despite these efforts to keep shelves stocked, the unprecedented time presented smaller brands the opportunity to gain new loyal customers. The transition to e-commerce became an avenue for increased exposure for brands and continues to prove to be a vital option to explore if they have not already.
The retail sector made major headlines this year. In an effort to avoid crowds and follow stay-at-home orders, many consumers began shifting their purchasing behaviors. With today’s technology, it has been easier than ever to shop via e-commerce platforms, whether grocery pickup, delivery or takeout. We experienced temporary out-of-stocks at brick-and-mortar stores and increased wait times on deliveries due to fulfillment shortages. Consumer reaction to these changes—including stocking up on staple products such as paper towels and toilet paper—caused spikes in grocery costs. April saw the largest monthly increase in food at home indexes since February 1974, according to the U.S. Bureau of Labor Statistics.
Food service has not been exempt from the impact of 2020. With less dining out and more eating at home, restaurants, bars, college cafeterias and stadiums have had to adapt with major shifts in business operations, traffic and income, and practically hit a standstill. In September, the National Restaurant Association reported that nearly one in six restaurants, or about 100,000 nationwide had closed permanently due to the pandemic. Restaurant management had to amend all aspects of operations, including their takeout procedures and other established programs.
In order to survive, restaurants have been creative, building welcoming and distanced environments, and delivering new services to diners. The use of technology will play an even bigger role, now more than ever, to limit touch points. QR codes for menus and contactless ordering and payment options will become the new norm for establishments, if they have not already. Going into 2021, some restaurants are even revamping menus and finding ways to turn them into CPG products, a new trend that is sure to take off in the new year. In April Shake Shack announced a ShackBurger Kit, complete with all the ingredients necessary to cook the chain’s signature burgers using the same ingredients as the dine-in experience, but from the comfort of home. More recently, in November, Chipotle introduced its first digital-only restaurant, which will handle only pickup and delivery orders. Many local restaurants have adopted new best practices to serve their patrons and stay in business. When in-person dining was suspended in the spring, one of our favorite neighborhood restaurants began offering takeout for the first time. Initially, they required patrons to come in the restaurant to sign their ticket and pick up their order. They evolved into a totally online ordering and payment process, including tip, and masked touchless curbside pickup. They have continued this even as in-person dining resumed. We can expect to see more tactics like these, loyalty programs and digitized experiences in the coming year.
It is impossible to be certain what 2021 will bring, but what we do know is that it will require proactive planning and preparation. Learning from 2020 will play a pivotal role in survival for some brands, companies and establishments, and mitigating against breaks in the supply chain until we return to a sense of normalcy. The good news is the food supply chain has proven to be very robust and resilient. How we react to changes in the next few months is critical to maintaining a strong and secure supply chain to ensure we continue smooth operations.
Everybody has to eat. That is the mantra of many companies involved in the food and beverage industry. It sounds so simple. Yet, in recent years, especially this one, it is becoming more challenging than we ever thought it could be. Disruptions from the beginning to the end of the food supply chain are making the task of feeding the masses more difficult. The COVID-19 pandemic has made people in all walks of life question the food supply chain. It is being evaluated in new ways with the goal of ensuring that there is food available in not just crisis times but in normal circumstances, too, as the population continues to grow and more disruptions interrupt the supply chain. Climate change is one disruption that is impacting the food and beverage industry and is possibly the biggest threat to overall food sustainability. When people think about climate change they only think about weather events and global warming, but if you look at the definition of “climate,” other issues need to be considered in addition to looking out the window and checking the thermometer.
Global warming, greenhouse gases, carbon emissions, the earth’s normal evolution and consumer behaviors can all contribute to climate change. Everyone talks about limiting greenhouse gases and carbon emissions but is it really happening? Almost every day, some government agency or industrial company announces policy changes touting the drive to 100% sustainable packaging by this year and that year. “Company X announced today that it will use fully-sustainable packaging by 2035.” Fully sustainable packaging; what does that even mean? And 2035, what’s the hurry?! There are other programs in the works, but the question is, are they quick fixes that are really just Band-Aids on a gunshot wound? Are they actually long-term solutions and are they happening fast enough? The adoption of electric vehicles could have a huge impact on our climate but it is just a small piece of the solution for total carbon emission elimination. Water to be used in non-farming consumption is getting harder to come by due to climate change. Land space is eroding and available farm space is decreasing. The process of raising and harvesting livestock is getting more complex and costly, making plant-based substitution options more attractive. But is that really a long-term solution if we are already running out of traditional farming space? Consumers hope that recycling will help combat the problem but it is barely making a dent and their changing food habits impact the climate as well. The earth itself is constantly going through a geological evolution in spite of what we humans do to the planet.
Global warming is accelerating climate change and causing a number of serious issues. The earth’s poles are warming, which is promoting permafrost, causing glaciers to melt and oceans to rise, which is impacting sea levels, irrigation methods and land temperatures that promote erosion. Higher than average temperatures can potentially impact the growing of certain crops in terms of yields and even where they are grown. Climate change is impacting all areas of agriculture, the environment and the total ecosystem. Insect behaviors are evolving and these changes affect crops. The food manufacturing and farming industries have realized that a “new way” needs to be implemented to grow food in environments that can combat these changes.
Sustainability initiatives call for practices that maintain or improve soil conservation and improve the overall health of soil. Two processes, regenerative agriculture and precision agriculture, working in conjunction, may actually provide a long-term solution by combining environmental and farm science with technology. Regenerative agriculture goes beyond soil conservation. It is a process that looks to reverse the effects of climate change. The regenerative process focuses on restoring soil health, solving water issues, reversing carbon cycles, and creating new topsoils and growing environments.
Precision agriculture focuses on increasing the land used for farming as well as increasing the productivity of that land. It utilizes newly available IoT devices like GPS services, guidance systems, mapping tools and variable rate technologies (VRT) to optimize crop yields. These new management systems collect data that transmit valuable metrics to farmers. Every aspect of farming, from planting to harvesting, can benefit from these emerging technologies. The information about the moisture of soil, for example, is sent to a computer, which then identifies signs of health or stress. Based on these signals, farmers can provide water, pesticide or fertilizer in adequate dosages. As a result, precision farming can help conserve resources and produce healthier crops.
Climate-smart agriculture, which is an approach to dealing with the new realities of climate change, is another smart agricultural method. Climate-smart agriculture improves agricultural systems by enhancing sustainability, which leads to improved food security. Food production has struggled to keep up with erratic weather patterns and natural resources have been stretched alarmingly thin, signaling a call for action. With this new approach, crop yields can adapt accordingly and productivity will increase.
The regenerative food system market has drawn a great deal of interest from investment groups. Initial investments have focused on water and soil reconstitution and development. Restoring soil strength reduces water usage and at the same time produces stronger and more available food sources. Underground and hydroponic versions of regenerative agriculture are also emerging.
Advanced technologies like these are making their way into the food, beverage and agriculture industries. Traditional agricultural methods are being replaced with climate-smart methods. Peripheral areas like streamlining the supply chain and optimizing manufacturing operations can receive “sustainable” benefits from these new agri-methods. The good news is that smart agricultural methods are making progress in counteracting climate change and revolutionizing farming worldwide.
Regenerative and precision agriculture are without question the leading processes and philosophies being used today to help all food industries combat climate change and other disruptors to the total food supply chain. These new technologies will continue to efficiently solve farming practices. In addition, there will be rollover benefits to food processors and manufacturers who will now have improved access to data. This will enable better communication, and improved traceability at all levels of the supply chain and throughout operations, distribution and procurement. This data will allow all involved in growing and producing food to communicate better and enable society to adapt to these changes.
Food Safety Recalls – Digging Deeper into FDA, CDC, USDA & Food Industry Data, with Allen Sayler, EAS Consulting
Preparing for Blockchain in “A New Era of Smarter Food Safety”, with Kathy Barbeire, CAT Squared
The Road to Traceability is Paved with Standards, with Lucelena Angarita, IPC/Subway and Liz Serti, GS1 US
TechTalk from Controlant
The event begins at 12 pm ET on Thursday, December 10. Haven’t registered? Follow this link to the 2020 Food Safety Consortium Virtual Conference Series, which provides access to all the episodes featuring critical industry insights from leading subject matter experts! We look forward to your joining us virtually.
Disruptions in the Supply Chain and the Government Response, with Brian Ravitch and Benjamin England, FDA Imports
Food Safety Risks and the Cold Supply Chain, with Jeremy Schneider, Controlant
A panel discussion on the Third-Party Certification Program, moderated by Trish Wester, AFSAP and featuring Doriliz De Leon and Clinton Priestly of FDA
TechTalk on How Restaurant Brands International has Digital Transformed Its Supply Chain to Ensure Food Safety, Quality & Consistency, with Jim Hardeman, CMX
The event begins at 12 pm ET on Thursday, November 19. Haven’t registered? Follow this link to the 2020 Food Safety Consortium Virtual Conference Series, which provides access to all the episodes featuring critical industry insights from leading subject matter experts! We look forward to your joining us virtually.
For a long time, companies could effectively run food safety programs using only manual methods of quality management, such as pen, paper, spreadsheets and emails. Those practices have served the food industry well, but it was only a matter of time before food safety and quality management systems became mostly an exercise of technology.
Even before COVID-19, industry trends and government requirements (e.g., FSMA, the FDA’s New Era of Smarter Food Safety) were setting roadmaps for modernizing food safety and quality management with technology. Additionally, the food industry is thirsty for better performance, more insights and data-based decisions—all things that need more sophistication than manual systems.
As we continue through the throes of the pandemic, it’s abundantly clear that the tech-based future we were planning for five to ten years in the future is happening now. It’s both unavoidable and imperative for the food industry to quickly adapt to the new landscape in front of us. It’s as the CEO of Airbnb, Brain Chesky, recently said: Because of the pandemic, he had to make “10 years’ worth of decisions in 10 weeks.”
From my viewpoint, I see at least seven additional trends that are also expediting modernization in our industry.
1. A shift toward proactive mindset versus reactive habits. Always reacting to what’s happening around you is precarious and makes it difficult to mitigate risks, for you as well as your location employees. The benefits of being more strategic and prepared for different scenarios can shore up your foundation, making you more ready for crises at the corporate and location level. Gathering, combining and analyzing data with technology gives you more insights, so you can make data-based decisions quickly and with more confidence.
2. Empowerment of employees to act as chief quality officers. This comes down to the difference between training employees versus coaching them. Giving employees rules (training) is one thing but showing them the reason why a rule exists (coaching) is another. In other words, when you add more coaching, you’re empowering employees to identify and act on the right thing to do for themselves—which is chief quality officer behavior.
It is important to reassure employees during coaching that honest assessments will result in managers’ support rather than punishment when things go wrong. When all employees proactively watch for quality and compliance issues and get the right support when bringing up these issues, you’re more likely to catch (and fix) small issues before they become huge liabilities.
3. An increase in virtual audits and self-assessments. I don’t believe the corporate audit will ever go away, but our customer data is showing a marked increase in location self-assessments and virtual audits before the pandemic, and even more since March.
Right now, these audit types are a necessary stopgap while the health and safety of auditors is in question. However, I’m also confident that virtual audits and self-assessments will continue to rise. The reason? These audits can start giving you a continuous view of food safety initiatives instead of a single point-in-time view.
Even though corporate audits are still part of best practices, shorter self-assessments and other evaluations can help you glean more data and gain more visibility on a continual basis, especially if you use technology to store and analyze your data in one place.
4. Continuous quality monitoring is overtaking point-in-time audits. Let’s expand on this trend. Manual processes may provide some valuable data, but it’s impossible to build real-time, integrated views into your business with only a yearly audit. It merely shows you a single (but important) point in time rather than what’s going on at each location right now. Additionally, since everyone is watching every employee at all store locations due to COVID-19, it is critical to have a checks and balances system to continually correct small issues and to find coaching opportunities.
Again, it’s virtually impossible to do this with paper checklists and email blasts because the daily-gathered data can easily be misfiled, deleted or otherwise lost. Many quality management software systems are built to integrate, store and analyze your data in a continuous manner.
5. Consolidation of multiple programs into single software solutions. As you think about updating your programs and systems from manual processes, it is important to remember that you don’t need a different solution for every activity. For example, you don’t necessarily have to invest in an auditing app, an analytics platform, and a document storage solution (and still probably manage many spreadsheets). There are many quality management software companies that have solutions built to combine and streamline all the activities you need to manage food safety or other quality management programs.
6. Innovations to share costs with suppliers. Budgets have not likely increased due to COVID-19, so investing in modernization may seem like a pipe dream. But many companies are offsetting their costs in a new way. They are requiring suppliers to use a specific software system to submit their qualifying documents, and then these companies are charging reasonable fees for suppliers’ use of the software.
Additionally, there more benefits to managing suppliers within your quality management system. First, it can streamline document collection and storage, and second, it gives you an opportunity to communicate and collaborate with your suppliers on a deeper level.
7. Standards bodies are accelerating plans to update requirements. As seen with GLOBAL.G.A.P. this year, some standards bodies are updating their digital submission requirements to streamline certification submissions as well as start building up sharable industry data so certification bodies can do their jobs better. Additionally, GLOBALG.A.P has already partnered with existing quality management software companies to make the integration and submission process even easier, and other standards bodies are sure to follow.
It’s clear to me that these trends are of a long-term nature, and each one requires updating manual food safety and quality programs to quality management system software solutions. Acting on these trends in any number will require modernization and digital transformation to have a lasting impact on your programs and your business. The mode of “just keeping the doors open” is not sustainable and will not last forever, so now is the time to start building a better food safety future.
Global food supply chains are complex and therefore quite vulnerable to errors or fraudulent activity. A company in Chile repackaged and falsely labeled cheap raspberries from China, reselling them as top-level organic Chilean raspberries in Canada. These raspberries were linked to a norovirus outbreak in Canada, sickening hundreds of people. A whistleblower complaint helped to uncover this fraudulent scheme that posed a significant risk to human health.
With the increasing globalization of the food industry, ensuring that products reaching consumers are safe has never been more important. Local, state and federal regulatory agencies are increasing their emphasis on the need for food and beverage laboratories to be accredited to ISO/IEC 17025 compliance. This complicated process can be simplified and streamlined through the adoption of LIMS, making accreditation an achievable goal for all food and beverage laboratories.
With a global marketplace and complex supply chain, the food industry continues to face increasing risks for both unintentional and intentional food contamination or adulteration.1 To mitigate the risk of contaminated products reaching consumers, the International Organization for Standardization (ISO), using a consensus-based approval process, developed the first global laboratory standard in 1999 (ISO/IEC 17025:1999). Since publication, the standard has been updated twice, once in 2005 and most recently in 2017, and provides general requirements for the competence of testing and calibration laboratories.2
In the recent revision, four key updates were identified:
A revision to the scope to include testing, calibration and sampling associated with subsequent calibration and testing performed by a laboratory.3
An emphasis on the results of a process instead of focusing on prescriptive procedures and policies.4
The introduction of the concept of a risk-based approach used in production quality management systems.2
A stronger focus on information technologies/management systems, specifically Laboratory Information Management System (LIMS).4
As modern-day laboratories reduce their reliance on hard copy documents and transition to electronic records, additional emphasis and guidance for ISO 17025 accreditation in food testing labs using LIMS was greatly needed. Food testing laboratories have increased reliance on LIMS to successfully meet the requirements of accreditation. Food and beverage LIMS has evolved to increase a laboratory’s ability to meet all aspects of ISO 17025.
Traceability
Chain of Custody
A key element for ISO 17025 accredited laboratories is the traceability of samples from accession to disposal.5 Sometimes referred to as chain of custody, properly documented traceability allows a laboratory to tell the story of each sample from the time it arrives until the time it is disposed of.
LIMS software allows for seamless tracking of samples by employing unique sample accession numbers through barcoding processes. At each step of sample analysis, a laboratory technician updates data in a LIMS by scanning the sample barcode, establishing time and date signatures for the analysis. During an ISO 17025 audit, this information can be quickly obtained for review by the auditor.
Procurement and Laboratory Supplies
ISO 17025 requires the traceability of all supplies or inventory items from purchase to usage.6 This includes using approved vendors, documentation of receipt, traceability of supply usage to an associated sample, and for certain products, preparation of supply to working conditions within the laboratory. Supply traceability impacts multiple departments and coordinating this process can be overwhelming. A LIMS for food testing labs helps manage laboratory inventory, track usage of inventory items, and automatically alerts laboratory managers to restock inventory once the quantity falls below a threshold level.
A food LIMS can ensure that materials are ordered from approved vendors only, flagging items purchased outside this group. As supplies are inventoried into LIMS, the barcoding process can ensure accurate storage. A LIMS can track the supply through its usage and associate it with specific analytical tests for which inventory items are utilized. As products begin to expire, a LIMS can notify technicians to discard the obsolete products.
One unique advantage of a fully integrated LIMS software is the preparation and traceability of working laboratory standards. A software solution for food labs can assist a technician in preparing standards by determining the concentration of solvents needed based on the input weight from a balance. Once prepared, LIMS prints out a label with barcodes and begins the supply traceability process as previously discussed.
Quality Assurance of Test and Calibration Data
This section of ISO 17025 pertains to the validity of a laboratory’s quality system including demonstrating that appropriate tests were performed, testing was conducted on properly maintained and calibrated equipment by qualified personnel, and with appropriate quality control checks.
Laboratory Personnel Competency
Laboratory personnel are assigned to a specific scope of work based upon qualifications (education, training and experience) and with clearly defined duties.7 This process adds another layer to the validity of data generated during analysis by ensuring only appropriate personnel are performing the testing. However, training within a laboratory can be one of the most difficult components of the accreditation process to capture due to the rapid nature in which laboratories operate.
With a food LIMS, management can ensure employees meet requirements (qualifications, competency) as specified in job descriptions, have up-to-date training records (both onboarding and ongoing), and verify that only qualified, trained individuals are performing certain tests.
Calibration and Maintenance of Equipment
Within the scope of ISO 17025, food testing laboratories must ensure that data obtained from analytical instruments is reliable and valid.5 Facilities must maintain that instruments are in correct operating condition and that calibration data (whether performed daily, weekly, or monthly) is valid. As with laboratory personnel requirements, this element to the standard adds an additional layer of credibility that sample data is precise, accurate, and valid.
A fully integrated software solution for food labs sends a notification when instrument calibration is out of specification or expired and can keep track of both routine internal and external maintenance on instruments, ensuring that instruments are calibrated and maintained regularly. Auditors often ask for instrument maintenance and calibration records upon the initiation of an audit, and LIMS can swiftly provide this information with minimal effort.
Measurement of Uncertainty (UM)
Accredited food testing laboratories must measure and report the uncertainty associated with each test result.8 This is accomplished by using certified reference materials (CRM), or known spiked blanks. UM data is trended using control charts, which can be prepared using labor-intensive manual input or performed automatically using LIMS software. A fully integrated food LIMS can populate control data from the instrument into the control chart and determine if sample data analyzed in that batch can be approved for release.
Valid Test Methods and Results
Accurate test and calibration results can only be obtained with methods that are validated for the intended use.5 Accredited food laboratories should use test methods that are current and contain embedded quality control standards.
A LIMS for food testing labs can ensure correct method selection by technicians by comparing data from the sample accession input with the test method selected for analysis. Specific product identifiers can indicate if methods have been validated. As testing is performed, a LIMS can track time signatures to ensure protocols are properly performed. At the end of the analysis, results of the quality control samples are linked to the test samples to ensure only valid results are available for clients. Instilling checks at each step of the process allows a LIMS to auto-generate Certificates of Analysis (CoA) knowing that the testing was performed accurately.
Data Integrity
The foundation of a laboratory’s reputation is based on its ability to provide reliable and accurate data. ISO 17025:2017 includes specific references to data protection and integrity.10 Laboratories often claim within their quality manuals that they ensure the integrity of their data but provide limited details on how it is accomplished making this a high priority review for auditors. Data integrity is easily captured in laboratories that have fully integrated their instrumentation into LIMS software. Through the integration process, data is automatically populated from analytical instruments into a LIMS. This eliminates unintentional transcription errors or potential intentional data manipulation. A LIMS for food testing labs restricts access to changing or modifying data, allowing only those with high-level access this ability. To control data manipulation even further, changes to data auto-populated in LIMS by integrated instrumentation are tracked with date, time, and user signatures. This allows an auditor to review any changes made to data within LIMS and determine if appropriate documentation was included on why the change was made.
Sampling
ISO 17025:2017 requires all food testing laboratories to have a documented sampling plan for the preparation of test portions prior to analysis. Within the plan, the laboratory must determine if factors are addressed that will ensure the validity of the testing, ensure that the sampling plan is available to the laboratory (or the site where sampling is performed), and identify any preparation or pre-treatment of samples prior to analysis. This can include storage, homogenization (grinding/blending) or chemical treatments.9
As sample information is entered into LIMS, the software can specify the correct sampling method to be performed, indicate appropriate sample storage conditions, restrict the testing to approved personnel and provide electronic signatures for each step.
Monitoring and Maintenance of the Quality System
Organization within a laboratory’s quality system is a key indicator to assessors during the audit process that the facility is prepared to handle the rigors that come with accreditation.10 Assessors are keenly aware of the benefits that a food LIMS provides to operators as a single, well-organized source for quality and technical documents.
Document Control
An ISO 17025 accredited laboratory must demonstrate document control throughout its facility.6 Only approved documents are available for use in the testing facility, and the access to these documents is restricted through quality control. This reduces the risk of document access or modification by unauthorized personnel.
LIMS software efficiently facilitates this process in several ways. A food LIMS can restrict access to controlled documents (both electronic and paper) and require electronic signatures each time approved personnel access, modify or print them. This digital signature provides a chain of custody to the document, ensuring that only approved controlled documents are used during analyses and that these documents are not modified.
Corrective Actions/Non-Conforming Work
A fundamental requirement for quality systems is the documentation of non-conforming work, and subsequent corrective action plans established to reduce their future occurrence.5
A software solution for food labs can automatically maintain electronic records of deviations in testing, flagging them for review by quality departments or management. After a corrective action plan has been established, LIMS software can monitor the effectiveness of the corrective action by identifying similar non-conforming work items.
Conclusion
Food and beverage testing laboratories are increasingly becoming accredited to ISO 17025. With recent changes to ISO 17025, the importance of LIMS for the food and beverage industry has only amplified. A software solution for food labs can integrate all parts of the accreditation process from personnel qualification, equipment calibration and maintenance, to testing and methodologies.11 Fully automated LIMS increases laboratory efficiency, productivity, and is an indispensable tool for achieving and maintaining ISO 17025 accreditation.
Perry Johnson Laboratory Accreditation (2019). An Overview of Changes Between 17025:2005 and 17025:2017. ISO/IEC 17025:2017 Transition. https://www.pjlabs.com/downloads/17025-Transition-Book.pdf
Food Fraud Vulnerability Assessment and Mitigation Plan, with Steve Sklare, Food Safety Academy; Karen Everstine, Ph.D., Decernis; and Peter Begg, Glanbia Nutritionals
Food Fraud Case History: Glanbia Nutritionals, with Peter Begg, Glanbia Nutritionals
Public Standards—Protecting the Integrity of the Food Supply Chain, with Steven Gendel, Ph.D., Food Chemicals Codex
Monitoring and Predicting Food Safety and Fraud Risks in Challenging Times, with Giannis Stoitsis, Agroknow
The event begins at 12 pm ET. Haven’t registered? Follow this link to the 2020 Food Safety Consortium Virtual Conference Series, which provides access to 14 episodes of critical industry insights from leading subject matter experts! We look forward to your joining us virtually.
The marketplace has experienced dramatic changes that were barely on the horizon 20 years ago—by that, I mean mobile phones, Instagram, Facebook, climate change, consumer transparency, globalization, novel new products delivered to your doorstep and now COVID-19, too.
I write from a perspective of both pride and concern. I had the privilege of representing GFSI in North America and helping the organization expand beyond Europe as new food safety laws were implemented in both the United States and Canada.
Questionable Utility of Multiple, Redundant and Costly Certifications
However, I also sympathized with small and medium food companies that struggled with minimal resources and food safety expertise to understand GFSI and then to become certified not once, but multiple times for multiple customers. GFSI’s mantra, “Once Certified, Accepted Everywhere,” was far from their GFSI reality…or, frankly, the reality of many food companies. My concern was not insignificant. The food industry is populated by a majority of small businesses, each seeking that one big break that could possibly, maybe open up access to retail shelves. Their confusion about being audited and certified to one standard was significant. Certification to multiple and redundant standards presented a daunting and costly endeavor for these start-ups. I heard their anxiety in their voices as I served as GFSI’s 1.800 “customer service rep” in North America for years.
In the 20 years since GFSI was established, the world has become much more transparent. Today, entire industries operate on open, international, consensus-based ISO management standards in far bigger and more complex sectors than the food sector (e.g., the automotive, airline and medical device sectors). And, in the 20 years since GFSI was established, an ISO food safety management system standard has been developed that is now used widely throughout the world with more than 36,000 certifications (i.e., ISO 22000).
Auditing and certifying a facility to a single, international, public standard would enhance GFSI transparency. It also would help to hurdle government concerns related to the lack of public input into the development of private standards, enabling private certifications like GFSI to be used efficiently as a compliance tool—a benefit to both government and food interests and to consumer health, safety and trade.
New Technologies
Many new technologies, such blockchain, artificial intelligence, sensors and the Internet of Things are being heralded widely now as well, particularly for businesses with complex supply-chains like those in like the fast-moving food and retail sectors. The benefits of these technologies are predicated on the use of a common digital language…or standard. Multiple and diverse standards, like GFSI, complicate the use of these new technologies, which is why FDA is examining the harmonizing role of standards and data management in its proposed New Era of Smarter Food Safety.
Sustainable Development
Today, food safety often is managed in tandem with other corporate environment, health and safety programs. The Consumer Goods Forum, which oversees GFSI, should take a similar approach and merge GFSI with its sustainability, and health and wellness programs to help CGF members meet their existing commitments to the United Nations’ Sustainable Development Goals (SDGs) and to encourage others to do the same. Here, once again, adoption of a single, transparent ISO standard can help. Adoption of ISO 22000 as the single and foundational standard for GFSI makes it easy to layer on and comply with other ISO standards—for example, for the environment (ISO 14000), worker protection (ISO 45001), energy efficiency (ISO 50001) and information/data security (ISO 27001)— and to simultaneously meet multiple SDGs.
Globalization
As I write, the COVID pandemic rages. It may re-align global supply chains and set back global trade temporarily, but the unprecedented rise in consumer incomes and corresponding decrease in poverty around the world attests to the importance of the global trade rules established by the World Trade Organization (WTO). Among these rules is a directive to governments (and businesses) to use common standards to facilitate trade, which uniquely recognizes ISO standards as well as those of Codex and OIE. When trade disputes arise, food interests that use ISO 22000 are hands-down winners, no questions asked. So, why use many and conflicting private standards?
Supply Chain Efficiency
Finally, ISO 22005, part of the ISO 22000 family of food management standards, also is aligned with GS1 Standards for supply-chain management, used throughout the food and retail sectors in North America and globally to share information between customers and suppliers. GS1 is most well known for being the administrators of the familiar U.P.C. barcode. The barcode and other “data carriers” provide visibility into the movement of products as well as information about select attributes about those products—including whether they have been certified under GFSI. Both GS1 and ISO GS1 standards are foundational to the new technologies that are being adopted in the fast-moving food, consumer products, healthcare and retail sectors both in the United States and globally. That alignment puts a spotlight on safety, sustainability, mobility, efficiency and so much more.
Focus Less on the Change, More on the Outcome
My proposal will surely set tongues in motion. Proposals to switch things up generally do. Disruption has become the norm, however, and food businesses are prized for their agility and responsiveness to the endless changes in today’s fast-moving marketplace. Still, ISO and Codex standards already are embedded in the GFSI benchmark so what I’m proposing should not be so disruptive and no one scheme or CPO should benefit disproportionately. And, less differentiation in the standard of industry performance will compel scheme or certification owners to shift their focus away from compliance with their standards and audit checklists to working with customers to truly enhance and establish “food safety-oriented cultures.” If they do, all of us emerge as winners.
The New Normal?
Around us new food businesses are emerging just as old businesses reinvent theirs. Trucks now operate as restaurants and athletes deliver dinner on bicycles. For a long time, we’ve operated businesses based on 20th century models that don’t resonate in the 21st century world. Are we at an inflection point, with both small and large businesses paying for costly and inefficient practices that no longer apply, and is it time for GFSI to change?
I welcome your thoughts. I truly do. Better, let’s discuss on a webinar or video call of your choosing. I look forward to connecting.
Submit questions you want Karil to answer during her session at the 2020 Food Safety Consortium Virtual Conference Series in the Comments section below.
The theme of better traceability and more transparency is a theme that will only grow stronger in the food industry. Just last week we heard FDA Deputy Commissioner for Food Policy and Response Frank Yiannas talk about the agency’s recently proposed FSMA rule on food traceability during the 2020 Food Safety Consortium Virtual Conference Series. In a recent Q&A with Food Safety Tech, Mikael Bengtsson, industry & solution strategy director for food & beverage at Infor, explains yet another role that technology can play in helping companies maintain agility during changes that affect the supply chain such as the coronavirus pandemic.
Food Safety Tech: How can food suppliers mitigate the risks of foodborne illness outbreaks under the stress of the COVID-19 pandemic and with limited resources?
Mikael Bengtsson: Food safety must always be a top priority for any food and beverage company. The risks associated with contamination can have a severe impact for public health, brand and company reputation. Safety routines are therefore always of the highest priority. In today’s situation with COVID-19, the stress on safety is further increased. Now, it’s not only about keeping products safe but also keeping employees healthy. One progression and resource that all food suppliers must follow is the FDA [FSMA rules], which require suppliers to be diligent and document their compliance. Especially now, while suppliers are faced with limited resources and additional stress during the pandemic, they must rely on the basics—ensuring masks are worn in and out of the workplace, washing hands for at least 20 seconds prior to touching any food, and remaining six feet apart from co-workers. When it comes to a crisis like COVID, take solace in knowing suppliers can rely on the basics—even when conditions are strained.
This year we have seen many companies having to adapt and change quickly. Demand has shifted between products, ingredients have been in shortage and many employees have had to work from home. Some were better prepared than others in adapting to the new situation. Technology plays a big role when it comes to agility. Regarding food safety, there are many proactive measures to be taken. The industry leaders establish transparency in their supply chain both upstream and downstream, use big data analysis to identify inefficiencies, as well as couple IoT with asset management systems to foresee issues before they happen.
FST: How can technology help suppliers meet the growing consumer demand for transparency in an end-to-end supply chain and improve consumer trust?
Bengtsson: Communication with consumers is changing. It is not only about marketing products, but also to educate and interact with consumers. This requires a different approach. Of course, consumers are loyal to brands, but are also tempted to try something new when grocery shopping. After a new study is published or a new story is written, consumers are likely to shift their shopping preferences.
It is therefore important to build a closer connection with consumers. Companies who have full supply chain visibility, transparency and traceability have detailed stories to tell their consumers. One way they can build these stories is by including QR codes on their packages. The consumer can then easily scan the code and be brought to a website that shows more product details—e.g. who was the farmer, how were the animals cared for and what sustainability efforts were involved. These are all important aspects to build consumer trust. According to researchers at MIT Sloan School of Management, investing in supply chain visibility is the optimal way to gain consumer trust, and can lead to increased sales.
FST: What technologies should suppliers leverage to better collaborate with trading partners and ensure consistent food safety procedures?
Bengtsson: When a food safety problem arises, batches, lots, and shipments need to be identified within minutes. Manufacturers must be able to trace all aspects of products throughout the entire supply chain—with complete visibility at the ingredient level—from farm to table, and everything in-between. An efficient and transparent food supply chain requires extensive collaboration and coordination between stakeholders. New technologies can extend both amount of collaboration possibilities and the impact of those collaborations. In order to maintain a transparent, efficient food supply chain, companies need to invest in modern cloud-based ERP and supply chain systems that incorporate the increased visibility of the Internet of Things (IoT) with data sharing, supplier and customer portals, and direct links between systems—all aimed at facilitating joint awareness and coordinated decision-making. Modern technologies that enable transparency will also have the added benefits of meeting consumer demand for product information, identifying and responding to food safety issues, reducing food waste, and supporting sustainability claims.
This website uses cookies so that we can provide you with the best user experience possible. Cookie information is stored in your browser and performs functions such as recognising you when you return to our website and helping our team to understand which sections of the website you find most interesting and useful.
Strictly Necessary Cookies
Strictly Necessary Cookies should be enabled at all times so that we can save your preferences for these cookie settings.
We use tracking pixels that set your arrival time at our website, this is used as part of our anti-spam and security measures. Disabling this tracking pixel would disable some of our security measures, and is therefore considered necessary for the safe operation of the website. This tracking pixel is cleared from your system when you delete files in your history.
We also use cookies to store your preferences regarding the setting of 3rd Party Cookies.
If you visit and/or use the FST Training Calendar, cookies are used to store your search terms, and keep track of which records you have seen already. Without these cookies, the Training Calendar would not work.
If you disable this cookie, we will not be able to save your preferences. This means that every time you visit this website you will need to enable or disable cookies again.
Cookie Policy
A browser cookie is a small piece of data that is stored on your device to help websites and mobile apps remember things about you. Other technologies, including Web storage and identifiers associated with your device, may be used for similar purposes. In this policy, we say “cookies” to discuss all of these technologies.
Our Privacy Policy explains how we collect and use information from and about you when you use This website and certain other Innovative Publishing Co LLC services. This policy explains more about how we use cookies and your related choices.
How We Use Cookies
Data generated from cookies and other behavioral tracking technology is not made available to any outside parties, and is only used in the aggregate to make editorial decisions for the websites. Most browsers are initially set up to accept cookies, but you can reset your browser to refuse all cookies or to indicate when a cookie is being sent by visiting this Cookies Policy page. If your cookies are disabled in the browser, neither the tracking cookie nor the preference cookie is set, and you are in effect opted-out.
In other cases, our advertisers request to use third-party tracking to verify our ad delivery, or to remarket their products and/or services to you on other websites. You may opt-out of these tracking pixels by adjusting the Do Not Track settings in your browser, or by visiting the Network Advertising Initiative Opt Out page.
You have control over whether, how, and when cookies and other tracking technologies are installed on your devices. Although each browser is different, most browsers enable their users to access and edit their cookie preferences in their browser settings. The rejection or disabling of some cookies may impact certain features of the site or to cause some of the website’s services not to function properly.
Individuals may opt-out of 3rd Party Cookies used on IPC websites by adjusting your cookie preferences through this Cookie Preferences tool, or by setting web browser settings to refuse cookies and similar tracking mechanisms. Please note that web browsers operate using different identifiers. As such, you must adjust your settings in each web browser and for each computer or device on which you would like to opt-out on. Further, if you simply delete your cookies, you will need to remove cookies from your device after every visit to the websites. You may download a browser plugin that will help you maintain your opt-out choices by visiting www.aboutads.info/pmc. You may block cookies entirely by disabling cookie use in your browser or by setting your browser to ask for your permission before setting a cookie. Blocking cookies entirely may cause some websites to work incorrectly or less effectively.
The use of online tracking mechanisms by third parties is subject to those third parties’ own privacy policies, and not this Policy. If you prefer to prevent third parties from setting and accessing cookies on your computer, you may set your browser to block all cookies. Additionally, you may remove yourself from the targeted advertising of companies within the Network Advertising Initiative by opting out here, or of companies participating in the Digital Advertising Alliance program by opting out here.