Tag Archives: documentation

Arun Apte, CloudLIMS
In the Food Lab

Is Your Food Testing Lab Prepping for an ISO/IEC 17025 Audit?

By Arun Apte
No Comments
Arun Apte, CloudLIMS

With the increasing globalization of the food industry, ensuring that products reaching consumers are safe has never been more important. Local, state and federal regulatory agencies are increasing their emphasis on the need for food and beverage laboratories to be accredited to ISO/IEC 17025 compliance. This complicated process can be simplified and streamlined through the adoption of LIMS, making accreditation an achievable goal for all food and beverage laboratories.

With a global marketplace and complex supply chain, the food industry continues to face increasing risks for both unintentional and intentional food contamination or adulteration.1 To mitigate the risk of contaminated products reaching consumers, the International Organization for Standardization (ISO), using a consensus-based approval process, developed the first global laboratory standard in 1999 (ISO/IEC 17025:1999). Since publication, the standard has been updated twice, once in 2005 and most recently in 2017, and provides general requirements for the competence of testing and calibration laboratories.2

In the recent revision, four key updates were identified:

  1. A revision to the scope to include testing, calibration and sampling associated with subsequent calibration and testing performed by a laboratory.3
  2. An emphasis on the results of a process instead of focusing on prescriptive procedures and policies.4
  3. The introduction of the concept of a risk-based approach used in production quality management systems.2
  4. A stronger focus on information technologies/management systems, specifically Laboratory Information Management System (LIMS).4

As modern-day laboratories reduce their reliance on hard copy documents and transition to electronic records, additional emphasis and guidance for ISO 17025 accreditation in food testing labs using LIMS was greatly needed. Food testing laboratories have increased reliance on LIMS to successfully meet the requirements of accreditation. Food and beverage LIMS has evolved to increase a laboratory’s ability to meet all aspects of ISO 17025.

ISO 17025 requirements
Figure 1. A schematic representation of some of the requirements of ISO/IEC 17025:2017 compliance. (Figure courtesy CloudLIMS)

Traceability

Chain of Custody
A key element for ISO 17025 accredited laboratories is the traceability of samples from accession to disposal.5 Sometimes referred to as chain of custody, properly documented traceability allows a laboratory to tell the story of each sample from the time it arrives until the time it is disposed of.

LIMS software allows for seamless tracking of samples by employing unique sample accession numbers through barcoding processes. At each step of sample analysis, a laboratory technician updates data in a LIMS by scanning the sample barcode, establishing time and date signatures for the analysis. During an ISO 17025 audit, this information can be quickly obtained for review by the auditor.

Procurement and Laboratory Supplies
ISO 17025 requires the traceability of all supplies or inventory items from purchase to usage.6 This includes using approved vendors, documentation of receipt, traceability of supply usage to an associated sample, and for certain products, preparation of supply to working conditions within the laboratory. Supply traceability impacts multiple departments and coordinating this process can be overwhelming. A LIMS for food testing labs helps manage laboratory inventory, track usage of inventory items, and automatically alerts laboratory managers to restock inventory once the quantity falls below a threshold level.

A food LIMS can ensure that materials are ordered from approved vendors only, flagging items purchased outside this group. As supplies are inventoried into LIMS, the barcoding process can ensure accurate storage. A LIMS can track the supply through its usage and associate it with specific analytical tests for which inventory items are utilized. As products begin to expire, a LIMS can notify technicians to discard the obsolete products.

One unique advantage of a fully integrated LIMS software is the preparation and traceability of working laboratory standards. A software solution for food labs can assist a technician in preparing standards by determining the concentration of solvents needed based on the input weight from a balance. Once prepared, LIMS prints out a label with barcodes and begins the supply traceability process as previously discussed.

Quality Assurance of Test and Calibration Data

This section of ISO 17025 pertains to the validity of a laboratory’s quality system including demonstrating that appropriate tests were performed, testing was conducted on properly maintained and calibrated equipment by qualified personnel, and with appropriate quality control checks.

Laboratory Personnel Competency
Laboratory personnel are assigned to a specific scope of work based upon qualifications (education, training and experience) and with clearly defined duties.7 This process adds another layer to the validity of data generated during analysis by ensuring only appropriate personnel are performing the testing. However, training within a laboratory can be one of the most difficult components of the accreditation process to capture due to the rapid nature in which laboratories operate.

With a food LIMS, management can ensure employees meet requirements (qualifications, competency) as specified in job descriptions, have up-to-date training records (both onboarding and ongoing), and verify that only qualified, trained individuals are performing certain tests.

Calibration and Maintenance of Equipment
Within the scope of ISO 17025, food testing laboratories must ensure that data obtained from analytical instruments is reliable and valid.5 Facilities must maintain that instruments are in correct operating condition and that calibration data (whether performed daily, weekly, or monthly) is valid. As with laboratory personnel requirements, this element to the standard adds an additional layer of credibility that sample data is precise, accurate, and valid.

A fully integrated software solution for food labs sends a notification when instrument calibration is out of specification or expired and can keep track of both routine internal and external maintenance on instruments, ensuring that instruments are calibrated and maintained regularly. Auditors often ask for instrument maintenance and calibration records upon the initiation of an audit, and LIMS can swiftly provide this information with minimal effort.

Figure 2. A preconfigured food LIMS to manage instrument calibration and maintenance data. (Figure courtesy of CloudLIMS)

Measurement of Uncertainty (UM)
Accredited food testing laboratories must measure and report the uncertainty associated with each test result.8 This is accomplished by using certified reference materials (CRM), or known spiked blanks. UM data is trended using control charts, which can be prepared using labor-intensive manual input or performed automatically using LIMS software. A fully integrated food LIMS can populate control data from the instrument into the control chart and determine if sample data analyzed in that batch can be approved for release.

Valid Test Methods and Results
Accurate test and calibration results can only be obtained with methods that are validated for the intended use.5 Accredited food laboratories should use test methods that are current and contain embedded quality control standards.

A LIMS for food testing labs can ensure correct method selection by technicians by comparing data from the sample accession input with the test method selected for analysis. Specific product identifiers can indicate if methods have been validated. As testing is performed, a LIMS can track time signatures to ensure protocols are properly performed. At the end of the analysis, results of the quality control samples are linked to the test samples to ensure only valid results are available for clients. Instilling checks at each step of the process allows a LIMS to auto-generate Certificates of Analysis (CoA) knowing that the testing was performed accurately.

Data Integrity
The foundation of a laboratory’s reputation is based on its ability to provide reliable and accurate data. ISO 17025:2017 includes specific references to data protection and integrity.10 Laboratories often claim within their quality manuals that they ensure the integrity of their data but provide limited details on how it is accomplished making this a high priority review for auditors. Data integrity is easily captured in laboratories that have fully integrated their instrumentation into LIMS software. Through the integration process, data is automatically populated from analytical instruments into a LIMS. This eliminates unintentional transcription errors or potential intentional data manipulation. A LIMS for food testing labs restricts access to changing or modifying data, allowing only those with high-level access this ability. To control data manipulation even further, changes to data auto-populated in LIMS by integrated instrumentation are tracked with date, time, and user signatures. This allows an auditor to review any changes made to data within LIMS and determine if appropriate documentation was included on why the change was made.

Sampling
ISO 17025:2017 requires all food testing laboratories to have a documented sampling plan for the preparation of test portions prior to analysis. Within the plan, the laboratory must determine if factors are addressed that will ensure the validity of the testing, ensure that the sampling plan is available to the laboratory (or the site where sampling is performed), and identify any preparation or pre-treatment of samples prior to analysis. This can include storage, homogenization (grinding/blending) or chemical treatments.9

As sample information is entered into LIMS, the software can specify the correct sampling method to be performed, indicate appropriate sample storage conditions, restrict the testing to approved personnel and provide electronic signatures for each step.

Monitoring and Maintenance of the Quality System

Organization within a laboratory’s quality system is a key indicator to assessors during the audit process that the facility is prepared to handle the rigors that come with accreditation.10 Assessors are keenly aware of the benefits that a food LIMS provides to operators as a single, well-organized source for quality and technical documents.

Document Control
An ISO 17025 accredited laboratory must demonstrate document control throughout its facility.6 Only approved documents are available for use in the testing facility, and the access to these documents is restricted through quality control. This reduces the risk of document access or modification by unauthorized personnel.

LIMS software efficiently facilitates this process in several ways. A food LIMS can restrict access to controlled documents (both electronic and paper) and require electronic signatures each time approved personnel access, modify or print them. This digital signature provides a chain of custody to the document, ensuring that only approved controlled documents are used during analyses and that these documents are not modified.

Software, LIMS
Figure 3. A software solution for food labs helps manage documents, track their revision history, and ensure document control. (Figure courtesy of CloudLIMS)

Corrective Actions/Non-Conforming Work
A fundamental requirement for quality systems is the documentation of non-conforming work, and subsequent corrective action plans established to reduce their future occurrence.5

A software solution for food labs can automatically maintain electronic records of deviations in testing, flagging them for review by quality departments or management. After a corrective action plan has been established, LIMS software can monitor the effectiveness of the corrective action by identifying similar non-conforming work items.

Conclusion

Food and beverage testing laboratories are increasingly becoming accredited to ISO 17025. With recent changes to ISO 17025, the importance of LIMS for the food and beverage industry has only amplified. A software solution for food labs can integrate all parts of the accreditation process from personnel qualification, equipment calibration and maintenance, to testing and methodologies.11 Fully automated LIMS increases laboratory efficiency, productivity, and is an indispensable tool for achieving and maintaining ISO 17025 accreditation.

References

  1. Spink, J. (2014). Safety of Food and Beverages: Risks of Food Adulteration. Encyclopedia of Food Safety (413-416). Academic Press.
  2. International Organization for Standardization (October 2017). ISO/IEC 17025 General requirements for the competence of testing and calibration laboratories. Retrieved from: https://www.iso.org/files/live/sites/isoorg/files/store/en/PUB100424.pdf
  3. 17025 Store (2018). Transitioning from ISO 17025:2005 to ISO/IEC 17024:2017. Standards Store.
  4. Perry Johnson Laboratory Accreditation (2019). An Overview of Changes Between 17025:2005 and 17025:2017. ISO/IEC 17025:2017 Transition. https://www.pjlabs.com/downloads/17025-Transition-Book.pdf
  5. Analytical Laboratory Accreditation Criteria Committee. (2018). AOAC INTERNATIONAL Guidelines for Laboratories Performing Microbiological and Chemical Analyses of Food, Dietary Supplements, and Pharmaceuticals, An Aid to Interpretation of ISO/IEC 17025. Oxford, England: Oxford University Press.
  6. Cokakli, M. (September 4, 2020). Transitioning to ISO/IEC 17025:2017. New Food Magazine.
  7. ISO/IEC 17025:2017. General requirements for the competence of testing and calibration laboratories.
  8. Bell, S. (1999). A Beginner’s Guide to Uncertainty of Measurement. Measurement Good Practice Guide. 11 (2).
  9. 17025Store (2018). Clause 7: Process requirements. Standards Store.
  10. Dell’Aringa, J. (March 27, 2017). Best Practices for ISO 17025 Accreditation: Preparing for a Food Laboratory Audit (Part I). Food Safety Tech.
  11. Apte, A. (2020). Preparing for an ISO 17025 Audit: What to Expect from a LIMS?
Mikael Bengtsson, Infor

As COVID-19 Stresses Food Suppliers, Technology Steps In

By Maria Fontanazza
No Comments
Mikael Bengtsson, Infor

The theme of better traceability and more transparency is a theme that will only grow stronger in the food industry. Just last week we heard FDA Deputy Commissioner for Food Policy and Response Frank Yiannas talk about the agency’s recently proposed FSMA rule on food traceability during the 2020 Food Safety Consortium Virtual Conference Series. In a recent Q&A with Food Safety Tech, Mikael Bengtsson, industry & solution strategy director for food & beverage at Infor, explains yet another role that technology can play in helping companies maintain agility during changes that affect the supply chain such as the coronavirus pandemic.

Food Safety Tech: How can food suppliers mitigate the risks of foodborne illness outbreaks under the stress of the COVID-19 pandemic and with limited resources?

Mikael Bengtsson: Food safety must always be a top priority for any food and beverage company. The risks associated with contamination can have a severe impact for public health, brand and company reputation. Safety routines are therefore always of the highest priority. In today’s situation with COVID-19, the stress on safety is further increased. Now, it’s not only about keeping products safe but also keeping employees healthy. One progression and resource that all food suppliers must follow is the FDA [FSMA rules], which require suppliers to be diligent and document their compliance. Especially now, while suppliers are faced with limited resources and additional stress during the pandemic, they must rely on the basics—ensuring masks are worn in and out of the workplace, washing hands for at least 20 seconds prior to touching any food, and remaining six feet apart from co-workers. When it comes to a crisis like COVID, take solace in knowing suppliers can rely on the basics—even when conditions are strained.

This year we have seen many companies having to adapt and change quickly. Demand has shifted between products, ingredients have been in shortage and many employees have had to work from home. Some were better prepared than others in adapting to the new situation. Technology plays a big role when it comes to agility. Regarding food safety, there are many proactive measures to be taken. The industry leaders establish transparency in their supply chain both upstream and downstream, use big data analysis to identify inefficiencies, as well as couple IoT with asset management systems to foresee issues before they happen.

FST: How can technology help suppliers meet the growing consumer demand for transparency in an end-to-end supply chain and improve consumer trust?

Mikael Bengtsson, Infor
Mikael Bengtsson, industry & solution strategy director for food & beverage at Infor

Bengtsson: Communication with consumers is changing. It is not only about marketing products, but also to educate and interact with consumers. This requires a different approach. Of course, consumers are loyal to brands, but are also tempted to try something new when grocery shopping. After a new study is published or a new story is written, consumers are likely to shift their shopping preferences.

It is therefore important to build a closer connection with consumers. Companies who have full supply chain visibility, transparency and traceability have detailed stories to tell their consumers. One way they can build these stories is by including QR codes on their packages. The consumer can then easily scan the code and be brought to a website that shows more product details—e.g. who was the farmer, how were the animals cared for and what sustainability efforts were involved. These are all important aspects to build consumer trust. According to researchers at MIT Sloan School of Management, investing in supply chain visibility is the optimal way to gain consumer trust, and can lead to increased sales.

FST: What technologies should suppliers leverage to better collaborate with trading partners and ensure consistent food safety procedures?

Bengtsson: When a food safety problem arises, batches, lots, and shipments need to be identified within minutes. Manufacturers must be able to trace all aspects of products throughout the entire supply chain—with complete visibility at the ingredient level—from farm to table, and everything in-between. An efficient and transparent food supply chain requires extensive collaboration and coordination between stakeholders. New technologies can extend both amount of collaboration possibilities and the impact of those collaborations. In order to maintain a transparent, efficient food supply chain, companies need to invest in modern cloud-based ERP and supply chain systems that incorporate the increased visibility of the Internet of Things (IoT) with data sharing, supplier and customer portals, and direct links between systems—all aimed at facilitating joint awareness and coordinated decision-making. Modern technologies that enable transparency will also have the added benefits of meeting consumer demand for product information, identifying and responding to food safety issues, reducing food waste, and supporting sustainability claims.

Tom Gosselin, DNV GL
FST Soapbox

Time to Get More Value From Social Audits

By Tom Gosselin
No Comments
Tom Gosselin, DNV GL

If global supply chains were considered complex before COVID-19, it’s hard to imagine what we’d call them now. Is there a single business operating exactly as it did before the pandemic?

All the more surprising, when survival would seem to be the top priority, pre-pandemic risk factors are not only alive and well, but they also actually outweigh coronavirus as strategic business concerns. In fact, COVID-19 didn’t even make the top five risk factors in the World Economic Forum’s 2020 Risk Report.

In its analysis of the WEF report, consulting firm Ernst and Young stated the following:

“While the risk of a pandemic was noted as important in the report, and something for which we are unprepared globally, it was not identified as one of the top five risks in terms of likelihood or impact in the 2020 survey. High-impact and highly probable risks, such as climate change, biodiversity loss and water crises, are just as present now as they were before the pandemic started . . .”

In our experience, some pre-pandemic business trends have actually gone from “warm and fuzzy” to red hot in spite of, or perhaps even due to, the COVID chaos. One prime example is in the case of social audits.

Social audits have been increasingly used over the past decade to evaluate corporate social responsibility and, indeed, the ethical conduct of entire supply chains. We’ve worked extensively with some of the biggest names in consumer electronics to conduct hundreds of social audits among component suppliers of all sizes. These assessments are mandatory, not by law, but by business policy. The vast scope reflects the importance—and business value—of operational factors that go beyond pure economics, whether it’s related to labor practices, health and safety, or environment.

A growing number of organizations strongly believe that social responsibility and profits are not mutually exclusive; they are in fact enablers of one another—but only if you commit to mining the full value of these programs. Think of it like data mining. Within any large body of information, you can almost always find hidden value. If you know how to look and have the proper tools. In the case of social auditing, the tools are the insights and methods employed by the auditing teams.

This is such a vital concept that we have designed its social auditing process to exceed even what the Responsible Business Alliance requires in its code of conduct. As a baseline, like every other auditor, we first look for nonconformities, which are the most serious issues requiring immediate attention. We also report “observations”, a second level of findings that speaks to things that are suboptimal but are not out of compliance, per se. That’s where it usually stops. This is the mentality of fault finding. And it has defined social auditing for a long time.

We can, and do, break that mold. Taking another critical step to ask, “what’s going right?”, provides an extra level of inquiry that probes for opportunities embedded in the fabric of the way things work. It could be an unrecognized best practice, something that people have been doing but nobody took the time, or had the awareness, to document and share. Often times, it’s something frontline workers have done as a response to an unexpected development, like a pandemic that makes you work from home.

In one service-based organization, we found that the sudden shift to working from home led to an unwelcomed rise in cases of domestic violence. We discovered this during audits of pay rates and working hours. The company was able to develop an innovative response, establishing a framework of verbal signals that workers now use to communicate stress or threat. In another instance, while auditing a large industrial company for workplace safety, we found that employees were using a shortcut to avoid a required safety measure. By probing and asking questions in a non-accusatory way, those same workers recommended a very simple workaround to the workaround—thereby restoring the safety measure without adding complexity to the task.

The key to all of this is mindset. Not just ours (the auditors), but the client organization’s as well. You must be willing to broaden the very idea of “compliance.” Sometimes, things that are out of spec are that way for a reason. Rather than lump every outlier as a flaw, you should look beneath the surface and see if there’s a good reason for it. That doesn’t automatically mean nonconformities are suddenly something else. But if you are only looking for problems, that’s all you’re going to find.

Kari Hensien, RizePoint
FST Soapbox

How to Enhance Your Food Safety Culture, Now More Important than Ever

By Kari Hensien
No Comments
Kari Hensien, RizePoint

I don’t have to tell you that COVID-19 is a crisis, and the consequences have been immediate and difficult. But as I speak to clients and look beyond the immediacy of the problems the food industry is facing, I am seeing positive insights that can help us now and in the future.

Food safety culture hasn’t always been clearly defined, nor has it been a “must” in many food safety systems. But the reality is that food safety culture—and the buy-in that needs to happen in your entire organization—is a direct and important element for staying up to date with new rules and being consistent and compliant at every location.

Join Kari Hensien for a complementary webinar, “4 Solvable Challenges for Enhancing Your Food Safety Culture 2020” | October 28 | Register NowWhat Does Food Safety Culture Mean Now?

The definition I have liked most is “food safety culture is what you’re doing when no one is watching.” But with the coronavirus pandemic, everyone is always watching, so the definition must expand.
Customers are carefully watching every employee at every location to gain a feeling of safety and trust at restaurants and eateries. And if employees aren’t up to speed or don’t have buy-in to your food safety culture, or even food safety in general, a single incident can turn away customers for good.

As an example, I recently visited a favorite taco joint. After the cashier rang me up, he put hand sanitizer on his gloves and proceeded to put handfuls of chips into my takeaway bag with those same “sanitized” gloves. I will not be going back.

So, food safety culture is still about what you do when no one is watching and when everyone is watching, making participation from every member of your organization critical.

What Can You Do Now to Enhance Food Safety Culture?

Practices that enhance food safety culture should initiate a shift in perspective before you implement more tangible activities. These shifts will be more challenging because they require your entire organization to be on board.

Perspective Shifts for Food Safety Culture

One or more paradigm shifts may be necessary to make enhancing your food safety culture successful. Sometimes initiatives like food safety culture can feel more like another addition to your to-do list rather than an asset that ultimately makes the job of a quality manager easier. So, consider these suggested shifts as you move forward.

  1. Food safety culture is part of your food safety system and your corporate social responsibility plans. With any crisis, not just the current pandemic, the values and expectations you instill in your employees can give you an immovable base, even if the surface is in constant fluctuation. And whether you’re dealing with an outbreak or a pandemic, showing you put customers and location employees first demonstrates good corporate citizenship.
  2. Location employees can be your biggest asset or your biggest liability. Employees perform better when they know the purpose behind what they’re doing rather than following rules that may seem arbitrary if they don’t have a clear understanding of why.
  3.  Punitive systems encourage hiding problems; supportive systems encourage collaboration and trust. If employees feel safe reporting issues or problems at their location, the more likely they’ll catch small issues before they become huge liabilities.
  4. Food safety culture can be a huge asset. In other words, instead of looking at food safety culture as another chore in your already crowded list, see it as an asset that improves food safety and creates better work environments, which inherently decreases risk and protects your brand.

In-Practice Shifts for Food Safety Culture

The paradigm shifts suggested above help build a support perspective for a strong food safety culture. The following shifts I suggest can help you implement tangible actions that benefit every level of your organization.

  1. Take great care of location employees. These employees are in direct contact with customers the most, and they are truly your first line of defense. Which means they can be an incredible asset or the weakest link.
  2. Consider audit and checklist software over laminated or paper checklists. The right software or app can instantly push new policies or standards to every location and employee at the same time, so everyone is always on the same page. Choose software or other tools that 1) makes it easy for all employees to get the information they need; 2) helps them quickly build behaviors that serve your quality and safety programs; and 3) empowers them to confidently share issues that need to be corrected so you get a true view of the health of any location.
  3. Consider quality management system software. With a platform (there are many that include audit and checklist tools), you can collect data points more quickly and from more sources to create a single source of truth and deepen insights. Software can directly support food safety culture, helping you:
    • Find new insights and continually improve your processes
    • Systematically rollout new policies and procedures
    • Drive adoption of new policies and “build muscle memory” so employees build good habits
    • Validate that your policies and practices are followed in every location
    • Identify locations or policies that need increased focus while you reward areas of successful performance.
  4. Look at your organization from a 30,000-foot perspective. This is not so easy to do if you are using manual processes such as paper, file cabinets or even spreadsheets. With those tools, you can see data points, but it takes a lot of work to build a big-picture view. Again, this is where software is invaluable. Many quality management system software options include built-in analytics and reporting, which means much of the work is done for you, saving you valuable time.

I hope your main takeaway from this article is that surviving a crisis requires a strong food safety culture. It helps unify employees across your organization, so everyone knows what’s expected of them and how their work affects the big picture. I see strong evidence that enhancing your food safety culture is more than the “next thing on your to-do list.” It’s a tool that you can put to work to decrease risk, increase compliance, and find small issues before they become huge problems.

Summer of 2020: Hot Topics Include FDA Inspections, Records Retention, and New Technology Era

By Food Safety Tech Staff
No Comments

10

Is Food-Grade always Food-Safe?

9

Important Restaurant Food Storage Safety Tips You Need to Know

8

How a History of Slow Technology Adoption Across Food Supply Chains Nearly Broke Us

7

FDA Unveils Blueprint for New Era of Smarter Food Safety

6

FDA, CDC Investigating Multistate Cyclospora Outbreak Involving Bagged Salads

5

COVID-19 Leads Food Companies and Meat Processors to Explore AI and Robotics, Emphasize Sanitation, and Work from Home

4

FDA Announces Inspections Will Resume…Sort Of

3

Sustainability Strategies for the Food Industry

2

Top Three Visibility Challenges in Today’s Food Supply Chain

1

The COVID-19 Record Retention Conundrum

Manuel Orozco, AIB International
FST Soapbox

Detecting Foreign Material Will Protect Your Customers and Brand

By Manuel Orozco
No Comments
Manuel Orozco, AIB International

During the production process, physical hazards can contaminate food products, making them unfit for human consumption. According to the USDA’s Food Safety and Inspection Service (FSIS), the leading cause of food recalls is foreign material contamination. This includes 20 of the top 50, and three of the top five, largest food recalls issued in 2019.

As methods for detecting foreign materials in food have improved over time, you might think that associated recalls should be declining. To the contrary, USDA FSIS and FDA recalls due to foreign material seem to be increasing. During the entire calendar year of 2018, 28 of the 382 food recalls (7.3%) in the USDA’s recall case archive were for foreign material contamination. Through 2019, this figure increased to approximately 50 of the 337 food recalls (14.8%). Each of these recalls may have had a significant negative impact on those brands and their customers, which makes foreign material detection a crucial component of any food safety system.

The FDA notes, “hard or sharp foreign materials found in food may cause traumatic injury, including laceration and perforation of tissues of the mouth, tongue, throat, stomach and intestine, as well as damage to the teeth and gums”. Metal, plastic and glass are by far the most common types of foreign materials. There are many ways foreign materials can be introduced into a product, including raw materials, employee error, maintenance and cleaning procedures, and equipment malfunction or breakage during the manufacturing and packaging processes.

The increasing use of automation and machinery to perform tasks that were once done by hand are likely driving increases in foreign matter contamination. In addition, improved manufacturer capabilities to detect particles in food could be triggering these recalls, as most of the recalls have been voluntary by the manufacturer.

To prevent foreign material recalls, it is key to first prevent foreign materials in food production facilities. A proper food safety/ HACCP plan should be introduced to prevent these contaminants from ending up in the finished food product through prevention, detection and investigation.
Food manufacturers also have a variety of options when it comes to the detection of foreign objects from entering food on production lines. In addition to metal detectors, x-ray systems, optical sorting and camera-based systems, novel methods such as infrared multi-wavelength imaging and nuclear magnetic resonance are in development to resolve the problem of detection of similar foreign materials in a complex background. Such systems are commonly identified as CCPs (Critical Control Points)/preventive controls within our food safety plans.

But what factors should you focus on when deciding between different inspection systems? Product type, flow characteristics, particle size, density and blended components are important factors in foreign material detection. Typically, food manufacturers use metal and/or x-ray inspection for foreign material detection in food production as their CCP/preventive control. While both technologies are commonly used, there are reasons why x-ray inspection is becoming more popular. Foreign objects can vary in size and material, so a detection method like an x-ray that is based on density often provides the best performance.

Regardless of which detection system you choose, keep in mind that FSMA gives FDA the power to scientifically evaluate food safety programs and preventive controls implemented in a food production facility, so validation and verification are crucial elements of any detection system.

It is also important to remember that a key element of any validation system is the equipment validation process. This process ensures that your equipment operates properly and is appropriate for its intended use. This process consists of three steps: Installation qualification, operational qualification and performance qualification.

Installation qualification is the first step of the equipment validation process, designed to ensure that the instrument is properly installed, in a suitable environment free from interference. This process takes into consideration the necessary electrical requirements such as voltage and frequency ratings, as well as other factors related with the environment, such as temperature and humidity. These requirements are generally established by the manufacturer and can be found within the installation manual.

The second step is operational qualification. This ensures that the equipment will operate according to its technical specification. In order to achieve this, the general functions of the equipment must be tested within the specified range limits. Therefore, this step focuses on the overall functionality of the instrument.

The third and last step is the performance qualification, which is focused on providing documented evidence through specific tests that the instrument will performs according to the routine specifications. These requirements could be established by internal and industry standards.

Following these three steps will allow you to provide documented evidence that the equipment will perform adequately within the work environment and for the intended process. After completion of the equipment validation process, monitoring and verification procedures must be established to guarantee the correct operation of the instrument, as well procedures to address deviations and recordkeeping. This will help you effectively control the hazards identified within our operation.

There can be massive consequences if products contaminated with foreign material are purchased and consumed by the public. That’s why the development and implementation of a strong food safety/ HACCP plan, coupled with the selection and validation of your detection equipment, are so important. These steps are each key elements in protecting your customers and your brand.

Shawna Wagner, DNV GL
FST Soapbox

Pandemics and Your Business Continuity Plan

By Shawna Wagner
2 Comments
Shawna Wagner, DNV GL

Who would have even thought to put the topic of a pandemic in your business continuity plan? I know, I sure never thought of it, even as a senior auditor. I think that most of us are familiar with the typical subjects of tornados, floods, power outages and disgruntled employees, to name a few. We now need to focus on adding a pandemic to the to-do list of your plan, as this global issue has become a reality since early 2020.

It is quite likely that your plant has been affected by COVID-19 in some way, therefore your site has put into place actions to mitigate the risks posed by the pandemic. What may not be likely, is that any of these actions have been documented. I have currently seen plants evolve actions based on the severity of the pandemic in their locations. Travel restrictions, reduced work force, changing employee personal protective equipment, additional employee monitoring, and remote work environments are some of the examples directly affecting sites that I have witnessed during the first half of this year. As plants learn and experience more issues, they tend to adapt to how they are mitigating the risks in their facilities.

Capturing what actions went smoothly and what has gone astray will aid in strengthening your business continuity plan. Pandemics as well as other extraordinary events are handled by a multi-step approach that needs organization and good communication. That is why it is imperative to build and document actions, then verify how those steps are to be used. Involving key personnel–not just the quality manager–at the site is a best practice in getting a full grasp on what needs to happen during an emergency. In several instances, I have witnessed that key personnel are not informed about where a site’s business continuity plan is located; or the plan was updated right before an audit and after goes back on the shelf for the next 12 months, collecting dust. Employees should be trained on the contents of the plan, their responsibilities (if they are part of the business continuity team), current contacts, updates, and ways to initiate proper channels, if or when a time comes to do so. Hopefully, it never does, but it sure does not hurt to be prepared.

The business continuity plan is not a “one-size-fits-all” approach for plants. An important consideration, when defining what actions to take, if your area has been plagued by a pandemic includes determining what risks are brought by employees, visitors (i.e., contractors), location, and type of product being produced. Plant A making a high-risk open product may implement additional hand washing and sanitation, whereas Plant B making a low-risk closed product may implement additional health screening (i.e., temperature checks) for employees. You should ensure that it makes sense, and it is beneficial for your site and your interested parties, such as customers, consumers and stakeholders.

Your business continuity plan should be built to be a great resource to you in the time of need. And in return, you will have to put some elbow grease into shaping the document in a way that fits the ever-changing food environment. Keeping your plant current will assist your business to quickly respond to a negative event. In consequence, not having a plan that works for your site, or any at all, could lead to closed doors.

LIMS, Laboratory information management system, food safety

How Advanced LIMS Brings Control, Consistency and Compliance to Food Safety

By Ed Ingalls
No Comments
LIMS, Laboratory information management system, food safety

Recent food scandals around the world have generated strong public concerns about the safety of the foods being consumed. Severe threats to food safety exist at all stages of the supply chain in the form of physical, chemical and biological contaminants. The current pandemic has escalated the public’s concern about cross contamination between people and food products and packaging. To eliminate food risks, manufacturers need robust technologies that allow for reliable monitoring of key contaminants, while also facilitating compliance with the ISO 17025 standard to prove the technical competence of food testing laboratories.

Without effective data and process management, manufacturers risk erroneous information, compromised product quality and regulatory noncompliance. In this article, we discuss how implementing a LIMS platform enables food manufacturers to meet regulatory requirements and ensure consumer confidence in their products.

Safeguarding Food Quality to Meet Industry Standards

Food testing laboratories are continually updated about foodborne illnesses making headlines. In addition to bacterial contamination in perishable foods and ingredient adulteration for economic gains, chemical contamination is also on the rise due to increased pesticide use. Whether it is Salmonella-contaminated peanut butter or undeclared horsemeat inside beef, each food-related scandal is a strong reminder of the importance of safeguarding food quality.

Food safety requires both preventive activities as well as food quality testing against set quality standards. Establishing standardized systems that address both food safety and quality makes it easier for manufacturers to comply with regulatory requirements, ultimately ensuring the food is safe for public consumption.

In response to food safety concerns, governing bodies have strengthened regulations. Food manufacturers are now required to ensure bacteria, drug residues and contaminant levels fall within published acceptable limits. In 2017, the ISO 17025 standard was updated to provide a risk-based approach, with an increased focus on information technology, such as the use of software systems and maintaining electronic records.

The FDA issued a notice that by February 2022, food testing, in certain circumstances, must be conducted in compliance with the ISO 17025 standard. This means that laboratories performing food safety testing will need to implement processes and systems to achieve and maintain compliance with the standard, confirming the competence, impartiality and consistent operation of the laboratory.

To meet the ISO 17025 standard, food testing laboratories will need a powerful LIMS platform that integrates into existing workflows and is built to drive and demonstrate compliance.

From Hazard Analysis to Record-Keeping: A Data-Led Approach

Incorporating LIMS into the entire workflow at a food manufacturing facility enables the standardization of processes across its laboratories. Laboratories can seamlessly integrate analytical and quality control workflows. Modern LIMS platforms provide out-of-the-box compliance options to set up food safety and quality control requirements as a preconfigured workflow.

The requirements set by the ISO 17025 standard build upon the critical points for food safety outlined in the Hazard Analysis and Critical Control Points (HACCP) methodology. HACCP, a risk-based safety management procedure, requires food manufacturers to identify, evaluate and address all risks associated with food safety.

LIMS, laboratory information management system
LIMS can be used to visualize control points for HACCP analysis according to set limits. Graphic courtesy of Thermo Fisher Scientific.

The systematic HACCP approach involves seven core principles to control food safety hazards. Each of the following seven principles can be directly addressed using LIMS:

  • Principle 1. Conduct a hazard analysis: Using current and previous data, food safety risks are thoroughly assessed.
  • Principle 2. Determine the critical control points (CCPs): Each CCP can be entered into LIMS with contamination grades assigned.
  • Principle 3. Establish critical limits: Based on each CCP specification, analytical critical limits can be set in LIMS.
  • Principle 4. Establish monitoring procedures: By defining sampling schedules in LIMS and setting other parameters, such as frequency and data visualization, procedures can be closely monitored.
  • Principle 5. Establish corrective actions: LIMS identifies and reports incidents to drive corrective action. It also enables traceability of contamination and maintains audit trails to review the process.
  • Principle 6. Establish verification procedures: LIMS verifies procedures and preventive measures at the defined CCPs.
  • Principle 7. Establish record-keeping and documentation procedures: All data, processes, instrument reports and user details remain secured in LIMS. This information can never be lost or misplaced.

As food manufacturers enforce the safety standards set by HACCP, the process can generate thousands of data points per day. The collected data is only as useful as the system that manages it. Having LIMS manage the laboratory data automates the flow of quality data and simplifies product release.

How LIMS Enable Clear Compliance and Optimal Control

Modern LIMS platforms are built to comply with ISO 17025. Preconfigured processes include instrument and equipment calibration and maintenance management, traceability, record-keeping, validation and reporting, and enable laboratories to achieve compliance, standardize workflows and streamline data management.

The workflow-based functionality in LIMS allows researchers to map laboratory processes, automate decisions and actions based on set criteria, and reduce user intervention. LIMS validate protocols and maintain traceable data records with a clear audit history to remain compliant. Data workflows in LIMS preserve data integrity and provide records, according to the ALCOA+ principles. This framework ensures the data is Attributable, Legible, Contemporaneous, Original and Accurate (ALCOA) as well as complete, consistent and enduring. While the FDA created ALCOA+ for pharmaceutical drug manufacturers, these same principles can be applied to food manufacturers.

Environmental monitoring and quality control (QC) samples can be managed using LIMS and associated with the final product. To plan environmental monitoring, CCPs can be set up in the LIMS for specific locations, such as plants, rooms and laboratories, and the related samples can then be added to the test schedule. Each sample entering the LIMS is associated with the CCP test limits defined in the specification.

Near real-time data visualization and reporting tools can simplify hazard analysis. Managers can display information in different formats to monitor critical points in a process, flag unexpected or out-of-trend numbers, and immediately take corrective action to mitigate the error, meeting the requirements of Principles 4 and 5 of HACCP. LIMS dashboards can be optimized by product and facility to provide visibility into the complete process.

Rules that control sampling procedures are preconfigured in the LIMS along with specific testing rules based on the supplier. If a process is trending out of control, the system will notify laboratory personnel before the product fails specification. If required, incidents can be raised in the LIMS software to track the investigation of the issue while key performance indicators are used to track the overall laboratory performance.

Tasks that were once performed manually, such as maintaining staff training records or equipment calibration schedules, can now be managed directly in LIMS. Using LIMS, analysts can manage instrument maintenance down to its individual component parts. System alerts also ensure timely recalibration and regular servicing to maintain compliance without system downtime or unplanned interruptions. The system can prevent users from executing tests without the proper training records or if the instrument is due for calibration or maintenance work. Operators can approve and sign documents electronically, maintaining a permanent record, according to Principle 7 of HACCP.

LIMS allow seamless collaboration between teams spread across different locations. For instance, users from any facility or even internationally can securely use system dashboards and generate reports. When final testing is complete, Certificates of Analysis (CoAs) can be autogenerated with final results and showing that the product met specifications. All activities in the system are tracked and stored in the audit trail.

With features designed to address the HACCP principles and meet the ISO 17025 compliance requirements, modern LIMS enable manufacturers to optimize workflows and maintain traceability from individual batches of raw materials all the way through to the finished product.

Conclusion

To maintain the highest food quality and safeguard consumer health, laboratories need reliable data management systems. By complying with the ISO 17025 standard before the upcoming mandate by the FDA, food testing laboratories can ensure data integrity and effective process management. LIMS platforms provide laboratories with integrated workflows, automated procedures and electronic record-keeping, making the whole process more efficient and productive.

With even the slightest oversight, food manufacturers not only risk product recalls and lost revenue, but also losing the consumers’ trust. By upholding data integrity, LIMS play an important role in ensuring food safety and quality.

Daniel Erickson, ProcessPro
FST Soapbox

Recall Risk Reduction: An ERP’s Role

By Daniel Erickson
No Comments
Daniel Erickson, ProcessPro

Consumer safety is of paramount importance and product recalls are a necessary means to this end. Product recalls are a serious, complex, and costly issue affecting the food and beverage industry in the United States. The FDA estimates that there are around 48 million cases of foodborne illness each year—causing one in six Americans to get sick from contaminated food. In addition to affecting public health, recalls have a dramatic effect on manufacturers by creating economic problems, damaging a company’s reputation, and imposing potential legal penalties and liabilities. In the search for a business management solution to better prepare themselves for and reduce the risk of recalls in their operations, many food manufacturers have discovered that technology, specifically ERP software, is key to lowering the risk of food and beverage product recalls.

An industry-specific ERP solution is a centralized business system with key industry features providing a system of record-keeping, with the tools to support the preparation and reduction of recall risks. While a manufacturer is ultimately responsible for a product recall, an ERP solution is essential in supporting and championing overall recall readiness and reduction. With the streamlined and automated inventory, manufacturing, and quality control processes managed within the software, critical steps and data that assist in recall mitigation are documented—including supplier verification records, audit logs, receipt records, quality testing, lot tracking, and shipment logs. The key to prevention of a product recall is preparation, which can be handled efficiently through an ERP’s functionality specifically in the following areas.

Supplier Management

An ERP facilitates best practices for supplier management and risk assessment within the solution to assure the acquisition of quality raw materials from trusted vendors. Its role is to maintain an approved supplier list for each product ingredient, documenting detailed supplier information, quality control test results, and risk level to ensure in-house and customer-specific standards are met. For approved or activated suppliers, information regarding materials that can be purchased through the vendor, applicable certifications, quality control results, and other pertinent supplier information is stored within the centralized data system of the ERP. A risk assessment for each vendor is also documented to ensure that any potential inherent risk(s) from vendor-issued recalls and to finished goods are limited.

In addition to activated suppliers, an ERP solution also assigns and manages qualified alternates to provide vetted selections should a primary supplier’s materials become unavailable. This positions a company well in the supply chain, as the investigative work has already been conducted on other suppliers, limiting the need and risk associated with onboarding an unknown supplier in a moment of crisis. Vendors are recorded within the system and ranked in order of preference and/or risk level so that they can be identified and put into use quickly if a supplier becomes unavailable—providing the preparation and leverage that companies need to mitigate the risk to safety in the supply chain. In a product recall situation, when a supplier notifies a customer of a contaminated ingredient, the supplier management feature within the ERP solution provides for a qualified replacement vendor that can fulfill the needed raw material quickly and efficiently.

Inventory Control

An ERP system offers end-to-end traceability, maintaining a comprehensive record that tracks raw ingredients, work-in-progress, and final products throughout the supply chain using barcode scanning to link product and lot information to batch tickets, QC testing results, shipping documents, and labels. This full forward and backward lot traceability is necessary to provide a documented audit trail imperative to locating raw materials or finished goods quickly within the initial 24-hour time period of a product recall. With full manufacturing, inventory, and reporting integrations, the ERP supports sound manufacturing practices that assist with recall preparedness – maintaining current Good Manufacturing Practices (cGMP), FDA reporting, GFSI compliance, and other industry-specific regulations to provide a documented audit trail with the ability to adapt as compliance requirements change.

Managing protocols to ensure the quality of inbound and outbound materials is essential in minimizing recall risk across the entire supply chain—from raw materials to the delivered final product. With an industry-specific ERP solution, formulas, recipes and instructions are maintained, scaled and verified to ensure consistency of products within the manufacturing process. This instills preventative measures throughout the production cycle in the form of process steps and quality control test specifications to bolster safety and quality. Quality features such as quarantine status and other status capabilities permit the isolating, removing and disposing of raw ingredients and finished goods that fail to meet quality control standards—triggering an alert to notify the purchasing department to investigate the issue. Having the ability to remove ingredients and finished goods from inventory or production prevents contaminated items from reaching store shelves and consumers, which reduces overall recall risk.

Inventory control practices are an important part of the functionality within an ERP solution that help to reduce overall recall risk. This includes managing and reporting of shelf life and expiration dates to maintain precise and lean control of inventory and reduce variances. Automated inventory transactions with the use of an ERP’s warehouse management solution (WMS) follow industry best practices and improve efficiency to ensure the accuracy of shipments, transfers, and material returns. This real-time visibility allows for the maintenance of FIFO inventory practices necessary to reduce the risk of spoilage.

One of the leading causes of contamination for food and beverage manufacturers that results in a recall event is a lack of allergen control throughout the supply chain and production process. An ERP system helps to track, manage and record the handling, storage and batch steps of raw materials from farm-to-fork. This includes stringent sanitary practices, lot tracking, raw material segregation and process controls to avoid allergen contamination or cross-contamination. Accurate product labeling is also a significant factor in reducing risk and an automated system that generates nutritional and product package labels plays a key role in a company’s recall prevention. To meet the needs of consumers and regulators, an ERP solution automates label creation to include accurate ingredient and allergen statements, nutrient analysis, expiration dates, lot and batch numbers, and regulatory specifications. The labeling history documented in the software allows products to be identified and located quickly in the event of a recall.

Reporting

Utilizing the recall functionality in the ERP solution allows companies to plan and test their recall process in advance. Performing mock recalls permits regular measurement and improvement of procedures to ensure rapid, accurate, and thorough responses by all company stakeholders in the event of a recall. A successful simulated exercise identifies 100% of recalled ingredients/products and notifies appropriate entities in a timely manner. Evaluation and documentation of mock recall exercises help expose inefficiencies, process gaps and procedural adjustments, which are designed to improve recall readiness and minimize consumer exposure to potentially dangerous contaminants.

As proof or documentation of adherence to specific processes, reporting is essential to demonstrate that these processes have been completed—without it, an integral component is missing. Across the supply chain and throughout the manufacturing process, documentation and reporting accentuate steps that have been taken to prepare and reduce recall risk. Risk-based assessments in supplier management, lot traceability reports, and mock recall reporting all provide a starting point of analysis to allow for adjustments to be made across the business. In a recall situation, the system is able to create lot tracking reports that encompass raw ingredients through shipped finished goods. These reports can be produced in minutes, rather than the hours it takes if data is stored within separate software programs.

Due to the amount of time and money that food and beverage companies invest in getting their products to market, it is imperative that preventative measures are taken in order to avoid a product recall. Forward-thinking manufacturers can help prepare for and reduce recall risks by utilizing several important features in ERP software—including supplier management, inventory control, and reporting. Using the tools at their disposal, a company can mitigate liabilities and protect their brand to turn a potential crisis into a future filled with opportunities.

Are Traasdahl, Crisp
FST Soapbox

How a History of Slow Technology Adoption Across Food Supply Chains Nearly Broke Us

By Are Traasdahl
1 Comment
Are Traasdahl, Crisp

The COVID-19 crisis has exacerbated existing disconnects between food supply and demand. While some may be noticing these issues on a broader scale for the first time, the reality is that there have been challenges in our food supply chains for decades. A lack of accurate data and information sharing is the core of the problem and had greater impact due to the pandemic. Outdated technologies are preventing advancements and efficiencies, resulting in the paradox of mounting food insecurity and food waste.

To bridge this disconnect, the food industry needs to implement innovative AI and machine learning technologies to prevent shortages, overages and waste as COVID-19 subsides. Solutions that enable data sharing and collaboration are essential to build more resilient food supply chains for the future.

Data-sharing technologies that can help alleviate these problems have been under development for decades, but food supply chains have been slow to innovate compared to other industries. By reviewing the top four data-sharing technologies used in food industry and the year they were introduced to food supply chains, it’s evident that the pace of technology innovation and adoption needs to accelerate to advance the industry.

A History of Technology Adoption in the Food Industry

The Barcode – 19741
We’re all familiar with the barcode—that assemblage of lines translated into numbers and letters conveying information about a product. When a cashier scans a barcode, the correct price pops up on the POS, and the sale data is recorded for inventory management. Barcodes are inexpensive and easy to implement. However, they only provide basic information, such as a product’s name, type, and price. Also, while you can glean information from a barcode, you can’t change it or add information to it. In addition, barcodes only group products by category—as opposed to radio-frequency identification (RFID), which provides a different code for every single item.

EDI First Multi-Industry Standards – 19812
Electronic data interchange (EDI) is just what it sounds like—the concept of sharing information electronically instead of on paper. Since EDI standardizes documents and the way they’re transferred, communication between business partners along the supply chain is easier, more efficient, and human error is reduced. To share information via EDI, however, software is required. This software can be challenging for businesses to implement and requires IT expertise to handle updates and maintenance.

RFID in the Food Supply Chain – 20033
RFID and RFID tags are encoded with information that can be transmitted to a reader device via radio waves, allowing businesses to identify and track products and assets. The reader device translates the radio waves into usable data, which then lands in a database for tracking and analysis.

RFID tags hold a lot more data than barcodes—and data is accessible in remote locations and easily shared along the supply chain to boost transparency and trust. Unlike barcode scanners, which need a direct line of sight to a code, RFID readers can read multiple tags at once from any direction. Businesses can use RFID to track products from producer to supplier to retailer in real time.

In 2003, Walmart rolled out a pilot program requiring 100 of its suppliers to use RFID technology by 2005.3 However, the retail giant wasn’t able to scale up the program. While prices have dropped from 35–40 cents during Walmart’s pilot to just 5 cents each as of 2018, RFID tags are still more expensive than barcodes.4 They can also be harder to implement and configure. Since active tags have such a long reach, businesses also need to ensure that scammers can’t intercept sensitive data.

Blockchain – 20175
A blockchain is a digital ledger of blocks (records) used to record data across multiple transactions. Changes are recorded in real-time, making the history unfalsifiable and transparent. Along the food supply chain, users can tag food, materials, compliance certificates and more with a set of information that’s recorded on the blockchain. Partners can easily follow the item through the physical supply chain, and new information is recorded in real-time.

Blockchain is more secure and transparent, less vulnerable to fraud, and more scalable than technologies like RFID. When paired with embedded sensors and RFID tags, the tech offers easier record-keeping and better provenance tracking, so it can address and help solve traceability problems. Blockchain boosts trust by reducing food falsification and decreasing delays in the supply chain.6

On the negative side, the cost of transaction processing with blockchain is high. Not to mention, the technology is confusing to many, which hinders adoption. Finally, while more transparency is good news, there’s such a thing as too much transparency; there needs to be a balance, so competitors don’t have too much access to sensitive data.

Cloud-Based Demand Forecasting – 2019 to present7
Cloud-based demand forecasting uses machine learning and AI to predict demand for various products at different points in the food supply chain. This technology leverages other technologies on this list to enhance communication across supply chain partners and improve the accuracy of demand forecasting, resulting in less waste and more profit for the food industry. It enables huge volumes of data to be used to predict demand, including past buying patterns, market changes, weather, events and holidays, social media input and more to create a more accurate picture of demand.

The alternative to cloud-based demand forecasting that is still in use today involves Excel or manual spreadsheets and lots of number crunching, which are time-intensive and prone to human error. This manual approach is not a sustainable process, but AI, machine learning and automation can step in to resolve these issues.

Obtaining real-time insights from a centralized, accurate and accessible data source enables food suppliers, brokers, distributors, brands and retailers to share information and be nimble, improving their ability to adjust supply in response to factors influencing demand.8 This, in turn, reduces cost, time and food waste, since brands can accurately predict how much to produce down to the individual SKU level, where to send it and even what factors might impact it along the way.

Speeding Up Adoption

As illustrated in Figure 1, the pace of technology change in the food industry has been slow compared to other industries, such as music and telecommunications. But we now have the tools, the data and the brainpower to create more resilient food supply chains.

Technology adoption, food industry
Figure 1. The pace of technology change in the food industry has been slow compared to other industries. Figure courtesy of Crisp.

Given the inherent connectivity of partners in the food supply chain, we now need to work together to connect information systems in ways that give us the insights needed to deliver exactly the rights foods to the right places, at the right time. This will not only improve consumer satisfaction but will also protect revenue and margins up and down food supply chains and reduce global waste.

References

  1. Weightman, G. (2015). The History of the Bar Code. Smithsonian Magazine.
  2. Locken, S. (2012). History of EDI Technology. EDI Alliance.
  3. Markoff, R, Seifert, R. (2019). RFID: Yesterday’s blockchain. International Institute for Management Development.
  4. Wollenhaupt, G. (2018). What’s next for RFID? Supply Chain Dive.
  5. Tran, S. (2019). IBM Food Trust: Cutting Through the Complexity of the World’s Food Supply with Blockchain. Blockchain News.
  6. Galvez, J, Mejuto, J.C., Simal-Gandara, J. (2018). Future Challenge on the use of blockchain for food traceability analysis. Science Direct.
  7. (2019). Crisp launches with $14.2 million to cut food waste using big data. Venture Beat.
  8. Dixie, G. (2005). The Impact of Supply and Demand. Marketing Extension Guide.