Tag Archives: pathogens

STOP Foodborne Illness

STOP Foodborne Illness Kicks Off National Food Safety Education Month with STOP3000 Campaign

By Maria Fontanazza
No Comments
STOP Foodborne Illness
Mitzi Baum, Stop Foodborne Illness
Mitzi Baum, CEO, STOP Foodborne Illness, will moderate a panel about STOP’s Recall Modernization Working Group during an episode of the 2021 Food Safety Consortium Virtual Conference Series. Join us on Thursday, October 14.

Each year the CDC estimates that more than 3000 people die as a result of contracting a foodborne illness. This month—National Food Safety Education Month—STOP Foodborne Illness is launching a fundraising campaign to educate the broader community about the issue, by encouraging participants to take 3000 steps per day.

STOP3000 begins today and runs through the entire month of September. This fundraiser will help STOP Foodborne Illness in its continued efforts to push food safety initiatives forward while engaging with key industry stakeholders, including federal regulatory agencies, food manufacturers, food retailers and the food service community.

“This is a way for everyone to participate in raising awareness about food safety,” Mitzi Baum, CEO of STOP told Food Safety Tech. “It’s about how you can make small changes in your daily habits to reduce the incidence of foodborne illness. People can sign up to walk, ask friends and family to post on their social media, or you can make a donation. Each day we’ll push out food safety facts and information, so you’re getting a little bit of knowledge every day during National Food Safety Education Month.”

If you’re interested in participating in the campaign, you can sign up on the JustGiving website. You can also search for and donate to current participants by typing “STOP3000” into the Search box on the JustGiving site.

Salmonella Surveillance

Mid-Year Pathogen Surveillance and Inspection Update

By Nathan Libbey
No Comments
Salmonella Surveillance

Food Recalls

The first half of 2021 saw almost a 20% increase in recalls vs. the last 6 months of 2020 (117 vs. 96). According to a recent report by Lathrop GPM, LLC, food producers have seen an increase in food safety incidents since the pandemic began, and expect an ongoing increase over the next year.1 A majority of recalls were due to undeclared allergens or potential for allergen cross contamination. Second to allergens were potential for microbiological contaminants, including Salmonella, Listeria, E. coli, and Cyclospora.

FDA Recalls Recalls
Figure 1 and 2. The first half of 2021 saw a 26% increase of facility inspections by the FDA. Despite this jump, inspections in the first half of 2020 were 80% higher than this year’s first six months. Source: FDA Recalls, Market Withdrawals, & Safety Alerts.

Inspection Results

The first half of 2021 saw a 26% increase of facility inspections by the FDA. Despite this jump, inspections in the first half of 2020 were 80% higher than this year’s first six months. Inspections generally lead to three outcomes; No Action Indicated (continue as you were,) Voluntary Action Indicated (voluntary to make some changes), or Official Action Indicated (OAI) (Regulatory Actions will be recommended by the FDA). A majority of inspections (56%) resulted in NAI this year, compared to 59% and 50% in the first and second halves of 2020, respectively.

Facility Inspections
Figure 3. Facility Inspections. Data from FDA.

Salmonella Surveillance

The FSIS provides ongoing surveillance of Salmonella and Campylobacter presence in poultry, both domestic and imported. Salmonella is reported by facility and each is given a category rating of 1–3. One is exceeding the standard (based on a 52-week moving average), two is meeting the standard, and three is below standard. For the 52-week reporting period ending May 30, 2021, 60% achieved category one, compared to 56% the previous 52 weeks.

Salmonella Surveillance Salmonella Surveillance
Figures 4 & 5. Salmonella surveillance data from FDA.

Listeria and Salmonella Surveillance in RTE Meat and Poultry

USDA FSIS conducts periodic sampling of Ready to Eat (RTE) meat and poultry products and reports quarterly results. Sampling is conducted both in a random fashion as well as based on risk-based sampling. In Q2 2021, 4769 samples were tested for Listeria, compared to 4632 in Q1.

Percent positive rates were .36% for Q2 and .43% for Q1. Neither quarter reported any positives for Listeria in imported RTE Meat and Poultry Products.

Salmonella samples for RTE totaled 3676 in Q2 2021, compared with 3566 in Q1. In both quarters, only 1 positive was found in the samples collected.

Routine Beef Sampling for E. coli 0157:H7 and STEC

The FSIS also conducts ongoing routine sampling of beef products for E. coli. E. coli is further classified into 0157:H7 and non-0157:H7 Shiga toxin-producing E. coli (STEC). In Q2 of 2021, 4467 samples were collected and tested for 0157:H7 versus 4268 in Q1. Of these, three were positive, compared to seven positives the preceding quarter. For STEC, a total of 8 positives were found, compared to 1 positive in Q1. No positives were found in imported goods in Q2, although in Q1 2021, 4 positives for STEC were found.

Conclusion

The first half of 2021 showed an increase in activity, which is on par with food industry survey data. Food recalls have increased, with food allergens remaining the most prevalent reason for recall or withdrawal. While inspections also increased, they have not returned to pre-pandemic levels. The impact of the spread of the Delta variant and increased restrictions is yet to be seen, but inspection activity will likely not rebound entirely by the end of the year. Pathogen tests by FSIS increased quarter over quarter for Salmonella, E. coli, and STEC, with mixed results in prevalence.

Reference

1. Lathrop GPM, LLC. (2021). Food Processing Trends, Outlook and Guidance Report. Retrieved from https://www.lathropgpm.com/report-agribusiness.html

Food Safety Testing Market

Processed Meat and Poultry Applications Drive Food Safety Testing Industry

By Hrishikesh Kadam
No Comments
Food Safety Testing Market

The food safety testing industry is constantly experiencing new developments, technological advances and regulatory pressures as the burden of foodborne illness remains a prevalent concern. Growing consumer preference for convenience and processed foods is a pivotal trend augmenting the industry outlook.

The World Health Organization (WHO) reports that every year nearly $110 billion is lost across middle- and low-income countries due to unsafe food. From the health risk perspective, pathogens, pesticides or toxins cause more than 200 diseases, ranging from diarrhea to cancers. Since most foodborne illnesses are preventable, WHO and other public health organizations worldwide are taking necessary action to establish strong and resilient food safety systems and enhance consumer awareness.

Food products may become contaminated at any stage of production, supply or distribution. Testing food and beverage products for safety is a critical component of the food and beverages sector. In terms of annual valuation, the global food safety testing market size is anticipated to hit $29.5 billion by 2027.

Food Safety Testing Market
Food Safety Testing Market. Figure courtesy of Global Market Insights, Inc.

Pathogen Testing Demand Rises as E. coli, Salmonella Infections Persist

Pathogen testing is of utmost importance to the food & beverage industry, as there remains a large number of virus and bacteria causing pathogens and microbial agents responsible for foodborne illnesses. Numerous instances of pathogen contamination have come to light recently, augmenting the need for food pathogen testing, especially during a time when COVID-19 poses a significant threat.

For instance, in July, the CDC and the FDA announced that they are working with other public health agencies to investigate an outbreak of E. coli O121 infections across 11 states. Meanwhile in the European Union, several countries have started investigating Salmonella illnesses linked to imported tahini and halva. Since 2019, about 80 people are estimated to be affected in Germany, Denmark, Norway, Sweden and the Netherlands.

Pathogen testing demand will likely increase across North America and Europe with further spread of infections. These regions are among the major consumers of processed meat, seafood and poultry products, augmenting the need for reliable food safety testing solutions.

Meat, Poultry and Seafood Consumption Drive Foodborne Infection Risks

Globally more individuals are consuming processed poultry and meat products at home, in restaurants, fast food restaurants, and other locations. The worldwide meat consumption is estimated to reach 460 to 570 million tons by the year 2050, as per data from The World Counts.

It is essential to ensure optimum product quality during meat processing to minimize the perils of foodborne microorganisms. Meat quality testing standards are continuously evolving to ensure that food manufacturers bring the best-quality products to the market. In July this year Tyson Foods recalled more than 8.9 million pounds of ready-to-eat chicken products due to potential Listeria monocytogenes contamination. The significant recall quantity itself represents the scope of pathogen testing requirements in processed meat sector.

E. coli O157 is considered to increase the risk of toxins that lead to intestinal problems and can cause significant illness among geriatric people, pregnant women and other high-risk populations. Earlier this year, PerkinElmer introduced an E. coli O157 pathogen detection assay to be used for testing raw ground beef and beef trim. The solution is greatly suited for food and beverage sector customers that need to test high volumes of food samples regularly. The development indicates an incessant fight to offer effective food safety testing products to tackle the threat of pathogen-related illnesses.

USDA’s FSIS also recently revised guidelines for controlling Salmonella and Campylobacter infections in raw poultry. The updated guidelines provide poultry establishments with best practices that they may follow to reduce the risk of such infections in raw products.

Food Safety Testing Trends amid COVID-19 Pandemic

Food safety testing demand has experienced a notable uptick since the outbreak of the coronavirus pandemic, as food security and sustainability have been recognized as key areas of focus.

Globally, a rise in online orders of groceries and restaurant meals has been observed. Major food regulators such as the FDA have released food safety protocols and guidelines for food companies, hotels and restaurants. These practices help ensure optimum food quality as well as the safety of employees, staff and consumers.

The FDA has been working with the USDA and FSIS as well as state authorities to investigate foodborne illnesses and outbreaks amid the pandemic. Many regions are also updating food safety policies to help overcome the challenges of the pandemic. While pathogen and toxin testing demand are growing in most regions, the inadequacy of food control infrastructure may limit food safety testing industry expansion in emerging economies.

Drawbacks of existing technologies and the need to reduce sample utilization, lead time and testing cost are driving new innovations in food safety testing. Ongoing developments are focused on providing accurate results in limited timespan.
The food safety testing market landscape will continue to evolve as new regulations are introduced, public awareness rises, and food consumption patterns change. The rapid testing technology segment, which includes PCR, immunoassay and convenience testing, is estimated to hold a major share of the overall industry owing to faster results provided, which benefits the organizations in terms of productivity and processing costs. In addition to previously discussed PerkinElmer, Eurofins Central Analytical Laboratories Inc, Bio-Rad Laboratories, Intertek Group PLC, Bureau Veritas SA, and SGS AG are some of the other notable names in the industry.

Dollar

Developments in PCR Technology Boost Food Pathogen Testing Market Outlook

By Vinisha Joshi
No Comments
Dollar

In recent years, foodborne illness has ignited alarming concerns across the globe. Food products can become contaminated with pathogenic bacteria through exposure to inadequate processing controls, animal manure, improper storage or cooking, and cross contamination. The following is a look at some of the pivotal figures that illustrate the effects of food contamination:

  • • According to WHO, an estimated of 600 million people globally fall ill after consuming contaminated food, of which 420,000 succumb to death every year.
  • Children under 5 years of age carry 40% of the foodborne disease burden, with 125,000 fatalities recorded annually.
  • Regionally, CDC reports suggest that foodborne pathogens cause nearly 9.6 million illnesses, 57,500 hospital admissions, and 1,500 deaths yearly in the United States alone.
  • Considering the financial aspects, it is essential to note that about $110 billion is lost almost every year in productivity and medical expenses from unsafe food consumption in low-and middle-income economies.

With such daunting numbers taking over the globe, there stands an innate requirement of cost-effective, easy-to-use, and accurate testing methods that ensure the consumer is delivered nothing but the safest food.

It has been estimated that global food pathogen testing market size could potentially surge to $5.5 billion by 2024.

Why is pathogen testing necessary? Pathogen testing is generally carried out to decrease and remove foodborne illnesses. It is a technique implemented in the very nascent stage of food production to ensure proper sanitation and food safety. The testing can be done using conventional technologies or the cutting-edge methods, including Polymerase Chain Reaction (PCR) or an immunoassay test.

PCR technology: An ideal and convenient technology in use for pathogen detection in food industry

PCR is one of the most frequently used technologies. The test enables the detection of a single bacterial pathogen, including E. Coli, Salmonella and Listeria, present in food by detecting a specific target DNA sequence. Aiding to such advantages, various business conglomerates that are involved in the food pathogen testing industry are taking strategic measures to bring forth novel innovations and practices in the space. The following is a brief snapshot of some developments in the PCR based pathogen testing technology landscape:

  • Sanigen, Ilumina partnership for development of NGS panel
    Owing to the escalating demand for PCR testing technology for detecting the presence of food pathogens, South Korea-based Sanigen, recently announced standing as a channel partner in the region for Illumina. Both the companies, in unison, are expected to work towards the development of NGS panels that can robustly detect 16 types of foodborne pathogen from around 400 samples.
  • Thermo Scientific’s 2020 launch of SureTest PCR Assays
    Last year Thermo Scientific expanded its portfolio of foodborne pathogen detection with the launch of the SureTest PCR Assays. The testing technology is poised to offer various food producers an access to a more holistic range of tests for every step of the analysis process.

A look at one sector: How is the expanding dairy sector complementing the growth structure of food pathogen testing market?

The dairy production industry is rapidly expanding in various developing and developed economies, marking a significant contribution to health, environment, nutrition and livelihoods. According to a National Farmers Union report, the U.S. dairy industry accounts for 1% of the GDP, generating an economic impact of $628 billion, as of 2019. However, dairy products, although deemed healthy, can contribute to severe human diseases in umpteen ways, with dairy-borne diseases likely to top the list.

Milk and products extracted from the milk of dairy cows can house a variety of microorganisms, emerging as a source of foodborne pathogens. This has pushed the need for appropriate testing methods and technologies, which can eliminate the presence of dairy-borne bacteria, like Salmonella.

Today, various rapid pathogen testing solutions that are suitable for detecting the presence of distinct bacteria and organisms are available for dairy-based food companies. For instance, PCR-based solutions are available to test for mastitis in dairy, which is a common rudder infection caused by microorganisms in dairy cattle, affecting the quality of milk. Apparently, Thermo Fisher offers VetMAX MastiType qPCR kits for relatively faster, efficient and easier mastitis diagnostics. In fact, the kits are deemed to be reliable tools that would accurately detect all mastitis causing bacteria in frozen, fresh and preserved milk samples.

Meat Products

Consumption of raw or undercooked meat is also expected to generate a significant food pathogen testing kits demand in the coming years. Common contaminants found in these products are E. coli and Salmonella. One of the strains of E. coli, Shiga Toxin-producing E. coli (STEC), is expected to emerge as a fatal contaminant present in the meat products. Consider the following:

  • WHO reports estimate that up to 10% of patients with STEC infection are vulnerable to developing haemolytic uraemic syndrome (HUS), with a case-mortality rate ranging from 3 to 5%.
  • Moreover, it has the ability to cause neurological complication in 25% of HUS patients and chronic renal sequelae, in around 50% of survivors.

Under such circumstances, the demand for pathogen testing in meat products, for detecting E. coli and other contaminants is gradually expanding worldwide. In January this year, PerkinElmer introduced its new tool for detection of E. coli O157 in food products. The kit has been developed for generating rapid results while simultaneously putting them forth to support food safety efforts related to beef and its self-life.

The global food and beverage sector is subject to stringent safety requirements and a considerable part of the responsibility lies with food producers. As such, access to rapid testing technologies will enable the producers to fulfill their safety obligations without compromising on productivity and bottom lines. The consistent development of PCR-based tools will certainly outline the gradual progress of food pathogen testing industry, keeping in mind the high penetration of dairy and processed meat products worldwide.

USDA Logo

FSIS Revises Guidelines for Controlling Salmonella and Campylobacter in Raw Poultry

By Food Safety Tech Staff
No Comments
USDA Logo

Register to attend Food Safety Hazards: Salmonella Detection, Mitigation, Control & Regulation | Thursday, July 15, 11:45 am ETFSIS has announced revised guidelines to help poultry facilities control Salmonella and Campylobacter in raw poultry. The changes are a result of new scientific and technical information, public comments, and FSIS’s decision to separate the guidelines into one on controlling Salmonella and one on controlling Campylobacter. The guidelines, “Availability of Revised Compliance Guidelines for Controlling Salmonella and Campylobacter in Raw Poultry”, also provide best practices for poultry establishments.

“FSIS has updated the guideline contents to reflect the most recent best practices, supported by current peer-reviewed literature and analyses of FSIS data,” the agency stated in a news release. “Updates include information on using neutralizing agents in sampling to prevent carryover of antimicrobial substances and a current list of antimicrobials for establishment use. Also included are improvements in the information on pre-harvest practices, with a comprehensive revision of the litter/bedding section.”

A copy of the docket is available on the Federal Register.

Angela Morgan, Aptar

Ask the Expert: Innovative Strategies for Mitigating Pathogen Risk in Minimally Processed Foods

Angela Morgan, Aptar

The COVID-19 pandemic has led to increased concern and awareness about health and safety across the spectrum. Though there is no evidence that the novel coronavirus can be transmitted through food, increased concern about food safety remains. Among other food items, outbreaks tied to various fresh and frozen produce are all too common, despite processors’ best efforts to mitigate risk of pathogen growth during harvesting and processing, including multiple intervention washes prior to product packaging.

Still, adverse issues have persisted, leaving the foodservice industry wondering what more can be done to make fresh produce safer. This is where material science innovations come into play. New technology can enable processors to continue to reduce pathogen growth after the package is sealed, providing a final intervention step to significantly reduce the risk of foodborne illness from minimally processed foods.

Q: How does material science technology work as a pathogen mitigation strategy for fresh produce?

Angela Morgan, Ph.D.: Innovations in material science technology have enabled a new class of polymer compounds that perform active functions within packaging material to protect products from environmental conditions that can adversely impact quality and safety. This is called active packaging technology.

My company, Aptar CSP Technologies, developed 3-Phase Activ-Polymer™ technology more than 25 years ago for use in the pharmaceuticals space. Now, this technology is being applied to provide food protection solutions, specifically for fresh and frozen produce, to help mitigate risk of foodborne illness outbreaks.

To understand how this technology works, you first need a basic grasp of 3-Phase Activ-Polymer™ technology. Essentially, this material science innovation has three parts: a base polymer that provides physical structure, an active particle or component that offers a protective function, such as absorbing liquids or emitting an antimicrobial agent, and a minority polymer or channeling agent that enables gas movement throughout the base polymer. This technology can be custom-formulated to accomplish a range of tasks, such as absorbing moisture, scavenging oxygen or volatile organic compounds (VOCs), emitting aromas or eliminating odors or, in the case of produce, dispersing an antimicrobial agent within a sealed package to mitigate pathogen growth.

The technology we are discussing here, InvisiShield™, is a specially-engineered antimicrobial delivery system that safely creates a controlled dosage of chlorine dioxide (ClO2) gas inside a sealed package to reduce pathogen growth – both bacterial and viral – while minimizing negative organoleptic properties. Extruded into a film, the technology is adhered to the lidding film of fresh produce immediately prior to sealing, providing a final intervention step that is currently lacking in today’s produce processing methods.

Once the package is sealed, the humidity inside the package triggers a controlled release of ClO2 into the environment surrounding the produce, reducing pathogens within a matter of hours and leaving no trace after treatment. Independent studies from researchers at NC State have validated the technology delivers approximately a 3 log or 99.9% reduction in pathogen growth with no negative impact to taste, appearance or texture. The technology has been shown to be effective on a range of bacteria and viruses such as pathogenic E. coli, Salmonella, Listeria monocytogenes, Human norovirus, Hepatitis A, Shigella, Campylobacter jejuni, Staphylococcus aureus, Yersinia enterocolitica, Vibrio vulnificus, Geotrichum candidum, Feline calicivirus, and Rotavirus.

Q: What are some of the benefits of adopting this technology?

Morgan: Aside from the obvious benefits of brand protection, keeping food safe for consumers, and reducing the likelihood of recalls due to foodborne pathogens, InvisiShield™ technology is an additional hurdle or mitigation step in a processor’s food safety plan or HACCP (Hazard Analysis Critical Control Point Plan). The HACCP is a management system endorsed by the FDA in which food safety is addressed through analysis and control of biological, chemical, and physical hazards from raw material production, procurement and handling, to manufacturing, distribution and consumption of the finished product. While currently voluntary for the produce industry, HACCP programs are also highly recommended across all food industries. Currently, to comply with food safety testing requirements, processors need to hold product for as long as three days to wait for testing results to assure the product is safe to distribute. However, the InvisiShield™ antimicrobial delivery system enables the processor to bypass those wait times, immediately distributing product upon packaging. This results in extended shelf life and reduced wastage, while also providing an additional intervention step to protect against all of the residual effects of having an outbreak such as negative impacts on brand image and the expense of recalls.

Currently, to comply with food safety testing requirements, processors need to hold product for as long as three days to wait for testing results to assure the product is safe to distribute. However, the InvisiShield™ antimicrobial delivery system enables the processor to bypass those wait times, immediately distributing product upon packaging because the final pathogen mitigation process occurs inside the sealed package during shipment.

About Angela Morgan, Ph.D

Angela Morgan, AptarAngela Morgan is Director of Business Development and Food Safety Solutions responsible for commercializing the portfolio of antimicrobial technologies at Aptar. She most recently worked at Sealed Air Corporation as the Director of America’s Legacy Food and Product Care Division, and previously worked at Turkey Hill Dairy and Campbell’s Soup Company. Morgan received her B.S and M.S. degrees in Food Science from Pennsylvania State University and her PhD. from Clemson University in Packaging Engineering. Finally, Morgan holds memberships in numerous professional and civic organizations and serves on the AIPIA advisory board.

Food Safety Hazards Series: Salmonella Detection, Mitigation, Control and Regulation

Food safety experts will discuss challenges and tangible best practices in Salmonella detection, mitigation and control, along with critical issues that the food industry faces with regards to the pathogen. This includes the journey and progress of petition to USDA on reforming and modernizing poultry inspections to reduce the incidence of Salmonella and Campylobacter; Salmonella detection, mitigation and control; and a case study on the pathogen involving crisis management.

Listeria

Virtual Event Targets Challenges and Best Practices in Listeria Detection, Mitigation and Control

By Food Safety Tech Staff
No Comments
Listeria

Next month, Food Safety Tech will host the first event in its Food Safety Hazards Series, “Listeria Detection, Mitigation, Control & Regulation” on April 15. The virtual event features Sanjay Gummalla, Ph.D., senior vice president of scientific & regulatory affairs at AFFI; April Bishop, senior director of food safety at TreeHouse Foods; and Douglas Marshall, Ph.D., chief scientific officer at Eurofins. These experts will address Listeria from the perspective of food manufacturing and preventing the introduction of the pathogen; risk based and practical approaches to address the presence of Listeria in food production and achieve key publish health goals relative to the pathogen; how to implement a strong Listeria control program; and the testing challenges from a lab perspective.

The event begins at 12 pm ET on Thursday, April 15.

Presentations are as follows:

  • Listeria Control and New Approaches to Addressing Risks, by Sanjay Gummalla
  • Managing Food Safety and Sanitation in the Digital Age, by April Bishop
  • Listeria Testing: Choosing the Right Method and Target, by Doug Marshall

The presentations will be followed by a panel discussion and a live Q&A with attendees.

Register now for the Food Safety Hazards Series: Listeria Detection, Mitigation, Control & Regulation

Deane Falcone, CropOne
FST Soapbox

E. Coli on the Rise: Lettuce Explain

By Deane Falcone, Ph.D.
No Comments
Deane Falcone, CropOne

The CDC estimates that 48 million people in the United States become sick with a foodborne illness each year. Some of the most common of these illnesses include norovirus, Salmonella, and E. coli. Each can result in a range of symptoms, from mild discomfort to serious, life-threatening illnesses. Although the coronavirus pandemic has worked to create a sense of heightened public health awareness, one of these common, yet preventable, foodborne illnesses—E. coli—is still on the rise.

What Is E. coli and How Common Are Infections?

According to the CDC, Escherichia coli (E. coli) are a large and diverse group of bacteria found in the environment, foods, and intestines of people and animals. Most strains of the bacteria are harmless, but certain ones can make you sick, causing diarrhea, urinary tract infections, respiratory illness and pneumonia, or other illnesses.

When it comes to understanding the scale of the problem, upwards of 70,000 Americans are estimated to fall ill because of E. coli each year, thousands of whom require hospitalization. E. coli outbreaks have been occurring with regularity, and the number of cases are increasing instead of slowing down, in frequency. In November 2020 alone, there were three ongoing E.coli outbreaks in the United States, accounting for 56 infections, 23 hospitalizations, and one death. At least one of these outbreaks stemmed from a common target for the bacteria: Romaine lettuce. When it comes to E. coli-contaminated foods, fresh leafy greens such as romaine or spinach are the most common vehicles for E. coli that can pose serious risks to human health.

Leafy Greens: An Ideal Target

Leafy greens are an easy target for E. coli for a number of reasons, the first being their popularity. The public recognition of the health value of consuming greater amounts of fresh leafy greens has correspondingly increased the production area of such produce to meet consumer demand. Crop production over wider areas makes tracking of contamination in the field more difficult and the greater consumption increases chances of eating contaminated leafy greens. This type of produce also grows low to the ground, increasing chances of exposing the edible, leafy portions of the lettuce to contaminated water. Finally, other vegetables are often cooked prior to consumption, killing the bacteria, whereas romaine and other leafy greens are often consumed raw.

Once this type of produce is exposed to contaminants, several characteristics of leaf surfaces make removal of bacteria such as E. coli difficult. Studies have shown that, at the microscopic level, the “roughness” or shape of the leaf surface can influence the degree to which bacteria adheres to leaves. Bacteria have specific protein fibers on their surface that are involved in the attachment of the bacteria to the leaf surface and this has been shown to be dependent on the surface roughness of the leaf. Other factors include the “pores” on leaf surfaces—stomata—through which plants take up carbon dioxide and release oxygen and water vapor. Pathogenic E. coli has been observed to enter such stomatal pores and therefore is often very resistant to removal by washing. Moreover, the density of stomata within leaves can vary between different varieties of lettuce or spinach and so affects the degree of E. coli attachment. Additional factors such as leaf age, damage and amount of contaminating bacteria also affect how effectively bacteria adhere to the leaves, making washing difficult.

Are E. Coli Outbreaks Avoidable?

Unfortunately, E. coli outbreaks will likely remain prevalent because of the challenge of interrogating all irrigation water for large and widespread production fields. Once microbial contaminants are present on fresh leafy produce, their complete removal by washing cannot be guaranteed, and it is very difficult to monitor every plot of crops continuously. However, there is a solution to this problem: Controlled environment agriculture (CEA). CEA is an broad term used for many varieties of indoor plant cultivation and can be defined as a method of cultivating plants in an enclosed environment, using technology to ensure optimal growing conditions.

Because outbreaks caused by E. coli-contaminated produce are most often due to produce coming into contact with contaminated irrigation water, indoor growing provides an ideal solution with zero reliance on irrigation water. It also offers a sealed environment with virtually no risk of contamination from animal excrement or other pathogen sources. Indoor farming also makes additional features possible that enhance safety including the use of purified water and handling done only by staff wearing protective clothing (for the plants) including lab coats, hair nets, and gloves. No ungloved hand ever comes into contact with the produce either during growth or in packaging. These standards are nearly impossible to achieve in a traditional farm setting.

Using hydroponic technology enables farming in a clean and contaminant-free, indoor environment. Applying best hygienic practices with this growing model provides safe and clean growth in a sealed, controlled environment, with virtually no risk of illness-causing pathogens.

At this point, not everyone can access food coming from a clean, indoor facility. At the consumer level the best way to avoid E. coli infection remains simply being diligent when it comes to washing. Even if produce is labeled “triple-washed,” if it was grown outdoors, the consumer should always wash it again. Or better yet, look for indoor, hydroponically-grown produce to further mitigate the risk.

Although these outbreaks will continue, as they do, we suspect more consumers will embrace indoor-grown produce and this emerging form of agriculture as a safer alternative. As consumers increasingly understand the advantages of indoor growing, such as enhanced quality and longer shelf life, the popularity of this growth method will increase. Eventually, a greater quantity of the most commonly-infected produce will come from these controlled environments, gradually producing an overall safer and healthier mass product.

Nicole Lang, igus
Retail Food Safety Forum

Robots Serve Up Safety in Restaurants

By Nicole Lang
No Comments
Nicole Lang, igus

Perhaps the top takeaway from the worldwide COVID-19 pandemic is that people the world over realize how easily viruses can spread. Even with social distancing, masks and zealous, frequent handwashing, everyone has learned contagions can cycle through the atmosphere and put a person at risk of serious, and sometimes deadly, health complications. In reality, there are no safe spaces when proper protocols are not followed.

The primary culprit in transmission of norovirus, according to the CDC, is contaminated food. “The virus can easily contaminate food because it is very tiny and spreads easily,” the CDC says in a fact sheet for food workers posted on its website. “It only takes a very small amount of virus to make someone sick.”

The CDC numbers are alarming. The agency reports about 20 million people get sick from norovirus each year, most from close contact with infected people or by eating contaminated food. Norovirus is the leading cause of disease outbreaks from contaminated food in the United States, and infected food workers cause about 70% of reported norovirus outbreaks from contaminated food.

The solution to reducing the transmission of unhealthy particles could be starting to take shape through automation. While robots have been used for the past few years in food manufacturing and processing, new solutions take food handling to a new level. Robots are no longer in the back of the house in the food industry, isolated in packaging and manufacturing plants. They are now front and center. The next time you see a salad prepared for you at a favorite haunt, you may be watching a robot.

“The global pandemic has altered the way that we eat,” said Justin Rooney, of Dexai Robotics, a company that developed a food service robotic device. Reducing human contact with food via hands-free ordering and autonomous food serving capabilities has the potential to reduce the spread of pathogens and viruses, and could help keep food fresh for a longer period of time.

Painful Pandemic

Increased use of automation in the foodservice industry might be one of the salvations of the COVID-19 pandemic. In an industry searching for good news, that might be the silver lining in an otherwise gloomful crisis.

Job losses in the restaurant industry have been brutal. By the end of November, nearly 110,000 restaurants in the United States had closed. A report by the National Restaurant Association said restaurants lost three times more jobs than any other industry since the beginning of the pandemic. In December, reports said nearly 17% of U.S. restaurants had closed. Some restaurants clung to life by offering outdoor dining, but as winter set in, that option evaporated. Some governors even demanded restaurant closures as the pandemic escalated in late fall.

Restaurants have faced a chronic labor shortage for years. Despite layoffs during the pandemic, many former foodservice employees are electing to leave the industry.

Teenagers, for instance, and some older workers are staying away for health and safety reasons. Some former workers are also finding out that they can make more money on unemployment benefits than by returning to work. Restaurant chains have hiked wages, but filling positions still remains a challenge.

Automated Solutions

Restaurants began dancing with the idea of robots nearly 50 years ago. The trend started slowly, with customers ordering food directly through kiosks. As of 2011, McDonald’s installed nearly 7,000 touchscreen kiosks to handle cashiering responsibilities at restaurants throughout Europe.

As technology has advanced, so has the presence of robots in restaurants. In 2019 Seattle-based Picnic unveiled a robot that can prepare 300 pizzas in an hour. In January, Nala Robotics announced it would open the world’s first “intelligent” restaurant. The robotic kitchen can create dishes from any cuisine in the world. The kitchen, which is expected to open in April in Naperville, Illinois, will have the capability to create an endless variety of cuisine without potential contamination from human contact.

Dexai designed a new robotic unit that allows for hands-free ordering that can be placed through any device with an Internet connection. The robot also includes a new subsystem for utensils, which are stored in a food bin to keep them temperature controlled. This ensures that robot is compliant with ServSafe regulations. The company is working on improving robot system’s reliability, robustness, safety and user friendliness. The robot has two areas to hold tools, a kitchen display system, bowl passing arm, an enclosure for electronics and two refrigeration units. It has the unique ability to swap utensils to comply with food service standards and prevent contamination as a result of allergens, for example.

Why Automation

Many industries have been impacted by advancements in automation, and the foodservice industry is no different. While initially expensive, the benefits over time can provide to be worth the investment.

One of the most significant advantages, particularly important in the post-COVID era, is better quality control. Automated units can detect issues much earlier in the supply chain, and address those issues.

Automation can also help improve worker safety by executing some of the more repetitive and dangerous tasks. Robots can also boost efficiency (i.e., a robot used for making pizza that can press out dough five times faster than humans and place them into ovens) and eliminate the risk of injury. Robots are also being used to make coffee, manage orders and billing, and prepare the food. Robots can also collect data that will help foodservice owners regarding output, quantity, speed and other factors.

“Alfred’s actions are powered by artificial intelligence,” according to Rooney. “Each time Alfred performs an action, the associated data gets fed into a machine learning model. Consequently, each individual Alfred learns from the accumulated success and failures of every other Alfred that has existed.” Dexai plans to teach the robot to operate other commonly found pieces of kitchen equipment such as grills, fryers, espresso machines, ice cream cabinets and smoothie makers.

Unrelenting Trend

Automated solutions might have come along too late to save many restaurants, but the path forward is clear. While they are not yet everywhere, robots are now in play at significant number of restaurants, and there is no turning back. Any way you slice it, robots in restaurants, clearly, is an idea whose time has come.