Tag Archives: Testing

Gabriela Lopez, 3M Food Safety
Allergen Alley

Method Acting: Comparing Different Analytical Methods for Allergen Testing and Verification

By Gabriela Lopez-Velasco, Ph.D.
1 Comment
Gabriela Lopez, 3M Food Safety

Every day, food industries around the world work to comply with the food labeling directives and regulations in place to inform consumers about specific ingredients added to finished products. Of course, special attention has been placed on ensuring that product packaging clearly declares the presence of food allergens including milk, eggs, fish, crustacean shellfish, tree nuts, peanuts, wheat, soy, sesame and mustard. (Additional food allergens may also be included in other regions.)

But labeling only covers the ingredients deliberately added to foods and beverages. In reality, food manufacturers have two jobs when it comes to serving the needs of their allergic consumers:

  1. Fully understand and clearly declare the intentional presence of allergenic foods
  2. Prevent the unintended presence of allergenic foods into their product

Almost half of food recalls are the result of undeclared allergens, and often these at-fault allergens were not only undeclared but unintended. Given such, the unintended presence of allergenic foods is something that must be carefully considered when establishing an allergen control plan for a food processing facility.

How? It starts with a risk assessment process that evaluates the likelihood of unintentionally present allergens that could originate from raw materials, cross-contact contamination in equipment or tools, transport and more. Once the risks are identified, risk management strategies should then be established to control allergens in the processing plant environment.
It is necessary to validate these risk management strategies or procedures in order to demonstrate their effectiveness. After validation, those strategies or procedures should then be periodically verified to show that the allergen control plan in place is continually effective.

In several of these verification procedures it may be necessary to utilize an analytical test to determine the presence or absence of an allergenic food or to quantify its level, if present. Indeed, selecting an appropriate method to assess the presence or the level of an allergenic food is vitally important, as the information provided by the selected method will inform crucial decisions about the safety of an ingredient, equipment or product that is to be released for commercialization.

A cursory review of available methods can be daunting. There are several emerging methods and technologies for this application, including mass spectroscopy, surface plasmon resonance, biosensors and polymerase chain reaction (PCR). Each of these methods have made advancements, and some of them are already commercialized for food testing applications. However, for practical means, we will discuss those methods that are most commonly used in the food industry.

In general, there are two types of analytical methods used to determine the presence of allergenic foods: Specific and non-specific methods.

Specific tests

Specific methods can detect target proteins in foods that contain the allergenic portion of the food sample. These include immunoassays, in which specific antibodies can recognize and bind to target proteins. The format of these assays can be quantitative, such as an enzyme-linked immunosorbent assay (ELISA) that may help determine the concentration of target proteins in a food sample. Or they can be qualitative, such as a lateral flow device, which within a few minutes and with minimum sample preparation can display whether a target protein is or is not present. (Note: Some commercial formats of ELISA are also designed to obtain a qualitative result.)

To date, ELISA assays have become a method of choice for detection and quantification of proteins from food allergens by regulatory entities and inspection agencies. For the food industry, ELISA can also be used to test raw ingredients and final food products. In addition, ELISA is a valuable analytical tool to determine the concentration of proteins from allergenic foods during a cleaning validation process, as some commercial assay suppliers offer methods to determine the concentration of target proteins from swabs utilized to collect environmental samples, clean-in-place (CIP) final rinse water or purge materials utilized during dry cleaning.

ELISA methods often require the use of laboratory equipment and technical skills to be implemented. Rapid-specific methods such as immunoassays with a lateral flow format also allow detection of target specific proteins. Given their minimal sample preparation and short time-to-result, they are valuable tools for cleaning validation and routine cleaning verification, with the advantage of having a similar sensitivity to the lowest limit of quantification of an ELISA assay.

The use of a specific rapid immunoassay provides a presence/absence result that determines whether equipment, surfaces or utensils have been cleaned to a point where proteins from allergenic foods are indiscernible at a certain limit of detection. Thus, equipment can be used to process a product that should not contain a food allergen. Some commercial rapid immunoassays offer protocols to use this type of test in raw materials and final product. This allows food producers to analyze foods and ingredients for the absence of a food allergen with minimum laboratory infrastructure and enables in-house testing of this type of sample. This feature may be a useful rapid verification tool to analyze final product that has been processed shortly after the first production run following an equipment cleaning.

Non-Specific Tests

While non-specific testing isn’t typically the best option for a cleaning validation study, these tests may be used for routine cleaning verification. Examples of non-specific tests include total protein or ATP tests.

Tests that determine total protein are often based on a colorimetric reaction. For example, commercial products utilize a swab format that, after being used to survey a defined area, is placed in a solution that will result in a color change if protein is detected. The rationale is that if protein is not detected, it may be assumed that proteins from allergenic foods were removed during cleaning. However, when total protein is utilized for routine verification, it is important to consider that the sensitivity of protein swabs may differ from the sensitivity of specific immunoassays. Consequently, highly sensitive protein swabs should be selected when feasible.

ATP swab tests are also commonly utilized by the food industry as a non-specific tool for hygiene monitoring and cleaning verification. However, the correlation between ATP and protein is not always consistent. Because the ATP present in living somatic cells varies with the food type, ATP should not be considered as a direct marker to assess the removal of allergenic food residues after cleaning. Instead, an analytical test designed for the detection of proteins should be used alongside ATP swabs to assess hygiene and to assess removal of allergenic foods.

Factors for Using One Test Versus Another

For routine testing, the choice of using a specific or a non-specific analytical method will depend on various factors including the type of product, the number of allergenic ingredients utilized for one production line, whether a quantitative result is required for a particular sample or final product, and, possibly, the budget that is available for testing. In any case, it is important that when performing a cleaning validation study, the method used for routine testing also be included to demonstrate that it will effectively reflect the presence of an allergenic food residue.

Specific rapid methods for verification are preferable because they enable direct monitoring of the undesirable presence of allergenic foods. For example, they can be utilized in conjunction with a non-specific protein swab and, based on the sampling plan, specific tests can then be used periodically (weekly) for sites identified as high-risk because they may be harder to clean than other surfaces. In addition, non-specific protein swabs can be used after every production changeover for all sites previously defined in a sampling plan. These and any other scenarios should be discussed while developing an allergen control plan, and the advantages and risks of selecting any method(s) should be evaluated.

As with all analytical methods, commercial suppliers will perform validation of the methods they offer to ensure the method is suitable for testing a particular analyte. However, given the great diversity of food products, different sanitizers and chemicals used in the food industry, and the various processes to which a food is subjected during manufacturing, it is unlikely that commercial methods have been exhaustively tested. Thus, it is always important to ensure that the method is fit-for-purpose and to verify that it will recover or detect the allergen residues of interest at a defined level.

Maria Fontanazza, Douglas Marshall, Eurofins, Food Safety Tech, Food Safety Consortium

Eurofins Expands Pacific Northwest Services with Acquisition of Cascade Analytical

By Food Safety Tech Staff
No Comments
Maria Fontanazza, Douglas Marshall, Eurofins, Food Safety Tech, Food Safety Consortium

Eurofins customers in the Pacific Northwest region will now be able to join expanded services in Washington State. The company has taken its offerings to a new level with the acquisition of Cascade Analytical, delivering a more rapid turnaround time for customers located in the regions served by the towns of Yakima and Wenatchee in Washington (the state’s central valley). “This is an area where we have many customers, but we haven’t been able to serve them nearly to the level that we can now by having a laboratory presence there,” said Douglas Marshall, Ph.D., chief scientific officer at Eurofins during an exclusive interview with Food Safety Tech at the 2018 Food Safety Consortium. Marshall shares his thoughts in the following video.

 

Stephanie Pollard, ClearLabs
In the Food Lab

The Power of Advanced NGS Technology in Routine Pathogen Testing

By Stephanie Pollard
No Comments
Stephanie Pollard, ClearLabs

The food industry is beginning to transition into an era of big data and analytics unlike anything the industry has ever experienced. However, while the evolution of big data brings excitement and the buzz of new possibilities, it also comes coupled with an element of confusion due to the lack of tools for interpretation and lack of practical applications of the newly available information.

As we step into this new era and begin to embrace these changes, we need to invest time to educate ourselves on the possibilities before us, then make informed and action-oriented decisions on how to best use big data to move food safety and quality into the next generation.

Stephanie Pollard will be presenting “The Power of Advanced NGS Technology in Routine Pathogen Testing” at the 2018 Food Safety Consortium | November 13–15One of the big questions for big data and analytics in the food safety industry is the exact origins of this new data. Next Generation Sequencing (NGS) is one new and disruptive technology that will contribute significantly to a data explosion in our industry.

NGS-based platforms offer the ability to see what was previously impossible with PCR and other technologies. These technologies generate millions of sequences simultaneously, enabling greater resolution into the microbial ecology of food and environmental surfaces.

This represents a seismic shift in the food safety world. It changes the age-old food microbiology question from: “Is this specific microbe in my sample?” to “what is the microbial makeup of my sample?”

Traditionally, microbiologists have relied on culture-based technologies to measure the microbial composition of foods and inform risk management decisions. While these techniques have been well studied and are standard practices in food safety and quality measures, they only address a small piece of a much bigger microbial puzzle. NGS-based systems allow more complete visibility into this puzzle, enabling more informed risk management decisions.

With these advances, one practical application of NGS in existing food safety management systems is in routine pathogen testing. Routine pathogen testing is a form of risk assessment that typically gives a binary presence/absence result for a target pathogen.

NGS-based platforms can enhance this output by generating more than the standard binary result through a tunable resolution approach. NGS-based platforms can be designed to be as broad, or as specific, as desired to best fit the needs of the end user.

Imagine using an NGS-based platform for your routine pathogen testing needs, but instead of limiting the information you gather to yes/no answers for a target pathogen, you also obtain additional pertinent information, including: Serotype and/or strain identification, resident/transient designation, predictive shelf-life analysis, microbiome analysis, or predictive risk assessment.

By integrating an NGS-based platform into routine pathogen testing, one can begin to build a microbial database of the production facility, which can be used to distinguish resident pathogens and/or spoilage microbes from transient ones. This information can be used to monitor and improve existing or new sanitation practices as well as provide valuable information on ingredient quality and safety.

This data can also feed directly into supplier quality assurance programs and enable more informed decisions regarding building partnerships with suppliers who offer superior products.

Similarly, by analyzing the microbiome of a food matrix, food producers can identify the presence of food spoilage microbes to inform more accurate shelf-life predictions as well as evaluate the efficacy of interventions designed to reduce those microbes from proliferating in your product (e.g. modified packaging strategies, storage conditions, or processing parameters).

Envision a technology that enables all of the aforementioned possibilities while requiring minimal disruption to integrate into existing food safety management systems. NGS-based platforms offer answers to traditional pathogen testing needs for presence/absence information, all the while providing a vast amount of additional information. Envision a future in which we step outside of our age-old approach of assessing the safety of the food that we eat via testing for the presence of a specific pathogen. Envision a future in which we raise our standards for safety and focus on finding whatever is there, without having to know in advance what to look for.

Every year we learn of new advancements that challenge the previously limited view on the different pathogens that survive and proliferate on certain food products and have been overlooked (e.g., Listeria in melons). Advanced NGS technologies allow us to break free of those associations and focus more on truly assessing the safety and quality of our products by providing a deeper understanding of the molecular makeup of our food.

Jessia Burke, Allergen Control Group
Allergen Alley

Allergen Detection & Control: Challenges & Strategies

By Jessica Burke
No Comments
Jessia Burke, Allergen Control Group

While global market demand for “free-from” food products is increasing, undeclared and mislabelled allergens, sulphites and gluten, throughout the supply chain, continue to be the number one cause of consumer product recalls. This is of major concern since the number of individuals affected by life-threatening allergies is on the rise, especially in children. Unfortunately, there is no cure for a food allergy; avoidance of allergenic food(s) is the only way to prevent an allergic reaction.

It is clear that allergen recalls negatively affect the consumer, however, they also result in huge financial implications and loss of brand credibility to all organizations involved. Businesses and brands may take a significant hit to their reputation since consumer perception plays a key role in the success of a business. With the increased use of the internet and social media, it is even more important to stay out of the spotlight and avoid recalls.

Among the reasons allergens hold the #1 position for product recalls may be lack of knowledge, insufficient supplier and raw material information, packaging errors, and accidental cross-contact. Cross-contact may be the result of poor cleaning practices, inadequate handling and storage procedures, employee traffic, and improper identification and assessments of risks. In addition, from a regulatory perspective, priority allergen lists and ingredient labeling laws vary from country to country, causing confusion for both manufacturers and consumers.

The good news is, implementing a strong allergen control plan can help to prevent recalls, protecting consumers and your business.

It starts with conducting a thorough risk assessment of each step in your process to determine where procedures and controls need to be implemented. A process flow diagram is very useful in understanding where allergenic ingredients and foods exist in the plant and where they are introduced into the process.

Control measures must be implemented even before raw materials enter the facility. The importance of understanding the incoming ingredients, inputs and suppliers cannot be overstated. The allergen status of every raw material handled or present in a food business needs to be identified and effective risk assessment tools applied. This involves identifying and documenting the food allergens present in each raw material, including non-food items like maintenance and cleaning chemicals. It’s imperative to recognize suppliers and backup suppliers’ vulnerabilities to ensure the success of the program. This should include identifying all allergens handled in the facility, as this might not be obvious based on ingredient declarations or product specification documents. Ensure supplier ingredient specification documents are current and routinely reviewed so accurate assessments can be made about the level of allergen risk.

Ensure there is segregation of allergenic foods or ingredients at every step of the process, from receiving raw materials through to shipping finished product. It is important to review labels at receiving to confirm the allergen status of raw materials. This serves as verification that ingredients have not been modified and the allergen status is still accurate. It also provides the basis upon which to determine storage and handling requirements. Visual tools are great for displaying the allergen status of each raw material. This can be done through applying color coded stickers or tape, unique tags or some other method, and should be done immediately at receiving. To avoid the potential for cross contamination from one ingredient to another, each allergen and/or group of allergens should have its own designated storage area or space. In addition, never store allergenic ingredients above ingredients that do not contain the same allergen.

Ensure there is segregation of allergenic foods or ingredients at every step of the process, from receiving raw materials through to shipping finished product. (Shutterstock image)

Controlling allergen risk throughout processing can be a major challenge since there are so many opportunities for cross contact. Ideally, physically segregate production of foods containing allergens from the production of non-allergenic foods. When physical segregation is not possible, dedicated production lines and equipment is best practice. Barring this, scheduling production runs appropriately can reduce the risk of cross contact and minimize sanitation and changeover activities. Where possible, schedule non-allergenic production before processing allergen-containing products. In addition, dedicate and identify tools and utensils for allergenic ingredients and products. Providing a visual aide can help ensure appropriate practices, and one way to do this is through color coding. Similarly, use dedicated employees on non-allergenic production lines and/or allergenic production lines. Make the employees easy to identify by implementing colored uniforms, hairnets or smocks. Identify allergenic materials by labelling or color coding throughout the manufacturing process. This should include rework, which should only be added to work in progress containing the same allergens.

Control of allergens does not stop at processing; the Maintenance department also plays a big role. Sanitary design needs to be considered when purchasing any piece of equipment. The equipment must be easily and fully washable to ensure proper sanitation. Positioning of equipment is also important in terms of cleanability and the potential of cross contact from an allergenic production line to a non-allergenic production line. Airflow and the potential for contamination of air borne allergenic dust to non-allergenic ingredients, products and equipment also should to be considered. Lastly, maintenance procedures must be put in place to prevent cross contact. This includes processes for repairing or maintaining equipment, cleaning tools and changing work apparel between repairs, as appropriate.

Consumers rely heavily on ingredient declarations and allergen statements on packaging to make purchasing decisions. “For those living with the medical condition of food allergy, the simple act of eating is complicated; avoiding their allergen is the only tool they have to manage the risk of a potential allergic reaction. These consumers require accurate labeling information to help them stay safe while still having sufficient food choices,” states Jennifer Gerdts, executive director at Food Allergy Canada. As such, it is imperative that the information on finished product labels and packaging is accurate. A solid allergen control program includes processes for reviewing labels for new and modified products to ensure they are reflective of the ingredients in the product. Labels and packaging should also be verified for accuracy prior to receipt, and at the beginning of a production run or at changeover. Outdated labels and packaging should be discarded immediately to prevent the chance of accidental usage. Inventory control procedures and label/packaging reconciliation is imperative to ensure the correct labels/packaging have been applied to the appropriate finished product.

It is crucial to develop and implement robust procedures for effectively cleaning equipment, utensils, food contact surfaces and non-food contact surfaces. This must include cleaning between batches of allergenic and non-allergenic production and responding to allergen spills. Carefully consider the tools and cleaning chemicals used for each the task, as this can make a significant difference in the success of the sanitation program. Verification and validation of cleaning practices must be undertaken to confirm that cleaning activities are effective in removing the allergens in the facility. This can be done through visual inspections, swabbing after sanitation and trending results.

One of the most important tools for ensuring the success of any allergen control program is educated employees. All foods handlers, regardless of their position, should undertake training in food allergens. Employees are the eyes and ears of the plant floor, the more knowledgeable they are, the more likely proper procedures will be followed, and potential risks identified.

Complete regular reviews of the allergen management program to ensure that it remains current, effective, and continues to assist in the production of a safe and legal food product. The program should be reviewed, at a minimum, whenever a customer complaint is received regarding allergic reactions, there is a change to raw materials or suppliers, there is a change in manufacturing processes, there has been an introduction of new machinery, or there is a change to cleaning practices and procedures.

An important aspect of an allergen control program is allergen testing. Testing can be used to confirm the allergen status of raw materials at receipt, to verify cleaning processes, and to evaluate finished products. An array of test methods exist for this purpose, including but not limited to, immunochemical methods such as ELISA or lateral flow devices, DNA-based methods, such as Polymerase Chain Reaction (PCR), Mass spectrometry (MS), and other non-specific methods such as Protein tests, ATP and visual inspection to verify cleaning. The choice of test method is very important and depends on the purpose of the test, the type of sample, food matrix, processing effects, desired turn-around time, availability of equipment, skill level of person doing the analysis and cost. ELISA and lateral flow devices are often used on-site at the production facility because results can be obtained quickly, costs are relatively low, and personnel can be easily trained to use these tests. In some circumstances of highly processed samples, PCR may be a better choice. However, PCR testing requires specialized equipment and skilled technicians so is usually performed in a third-party testing lab. Mass spectrometry is yet another option but can be costly and like PCR, this method requires specialized equipment and skilled personnel to perform the analysis.

As you can see, there are many factors to consider when developing an effective allergen control program. While it may seem daunting, it is critical understand how to identify and assess all allergen risks and develop a plan to control, verify and validate each one. The upfront work may be challenging, however once implemented, an effective allergen control program will protect allergenic consumers from the potentially life-threatening effects of inadvertently consuming and allergenic product, and will protect your business from financial loss and a tainted brand reputation.

Eurofins Technologies, Gold Standard Diagnostics

Eurofins Technologies, Gold Standard Diagnostics Enter Strategic Partnership

Eurofins Technologies, Gold Standard Diagnostics

This week Eurofins Technologies announced a strategic partnership with Gold Standard Diagnostics (GSD), a developer and manufacturer of fully-automated diagnostic instruments and assays for various test methods. The agreement unites Gold Standard’s ELISA-based instruments and Eurofins Technologies rapidly-expanding diagnostic test kit portfolio for  food, environmental and animal health testing.

Gold Standard Diagnostics will be the standard platform for Eurofins Technologies ELISA-based food testing kits including food pathogens, allergens, mycotoxins, veterinary drug residues, and animal health kits.

3M, E.Coli, rapid testing

3M Earns AOAC PTM Certification for E.Coli and Coliform Test

3M, E.Coli, rapid testing

3M Food Safety has received the AOAC Research Institute’s Performance Tested Method Certification for its Petrifilm Rapid E.coli/Coliform Count Plate. Introduced in February, the rapid microbial test helps food and beverage processors detect the presence of E.coli and other coliform bacteria. The test can recover E.coli and distinguish it from other coliforms within 18–24 hours.

The AOAC PTM designation validated the count plate as an equivalent alternative to FDA and ISO standard references to enumerate these bacteria. The evaluation was performed by an independent lab on food and environmental surfaces that include raw and pasteurized dairy products; raw and prepared meat; poultry and seafood; fresh fruit and product; and baby food, pet food and flour.

3M Food Safety is also pursuing MicroVal validation in accordance with ISO 16140-2.

Sequencing pattern, pathogens

Pilot Program Aims to Advance NGS to a Routine Pathogen Testing Platform

By Maria Fontanazza
No Comments
Sequencing pattern, pathogens

NGS, or next generation sequencing, is described as the “most updated automated DNA sequencing technology available,” according to Eurofins’ Gregory Siragusa, Ph.D. and Douglas Marshall, Ph.D. Over the past few years, there’s been quite a bit of discussion around the technology and its role in transforming food safety testing.

Clear Labs has been especially vocal about the potential of NGS, as the company has built itself on an NGS platform with capabilities that include GMO testing, pathogen detection and ingredient authenticity. The company just announced a pilot program for its NGS platform that aims to bring the technology into the realm of routine food safety testing. Mahni Ghorashi, co-founder of Clear Labs, recently discussed the program with Food Safety Tech.

Food Safety Tech: Is the platform entering the pilot the same as the technology we talked about in the Q&A,“New Whole Genome Sequencing Test Monitors Threat of Pathogens” a couple of years back?. If so, have there been developments since? If this is a different platform, how long has it been in development and what is the novelty and advantages?

Mahni Ghorashi, Clear Labs
Mahni Ghorashi, co-founder of Clear Labs

Mahni Ghorashi: That’s a good question, and I understand why this could be a little confusing, especially for someone who has followed the development of Clear Labs over the years. (Thank you!).

The current platform being piloted is based on the same fundamental technology we’ve always had, but we have built it out considerably and adapted it for routine food safety testing.

At its core, our platform is based on industry-leading NGS technology paired with IP-protected bioinformatics. It’s always been backed by the world’s largest reference database for genomic food markers and food sample metadata.

Over the last year and a half, we’ve built capabilities into the core platform that allow our system to be deployed at high testing volumes for food safety testing, at scale.

We’ve built in robotics and automation to make this system truly “end-to-end” and to speed the process from start to finish.

We’ve reduced the cost by another order of magnitude, with faster turnaround time and greater accuracy than competing market products.

In short, the latest version of the platform is the first automated system that takes advantage of advanced DNA sequencing, bioinformatics, and robotics.

This pilot represents a new era for Clear Labs and the food safety industry at large. While our tests have always been higher-resolution and higher-accuracy than PCR, we now believe we can compete with the turnaround times and cost of PCR.

FST: What is the duration of the pilot study? What is the goal of the pilot?

Ghorashi: The goal of the pilot study is to demonstrate that NGS is ready to be adopted as the new standard for routine food safety testing. We believe that our pilot study will also help the industry to fully appreciate how NGS technologies will modernize food safety programs, without changing the way food safety is conducted today.

The pilots last for two weeks. Because our platform is for high-volume, routine safety testing, it doesn’t take long to have tested a statistically significant number of samples. We’re able to quickly provide our customers with a report comparing our results to that of their legacy, PCR-based tests.

FST: What feedback have you received about the platform thus far? What is its potential?

Ghorashi: The feedback we’ve gotten has been overwhelmingly positive. We can’t talk specifics until the pilot is complete, but I can tell you in broad terms that our early pilot customers have been overwhelmingly enthusiastic.

The potential is enormous. This NGS platform—the first of its kind—is going to usher in a new era of food safety testing.

Traditional techniques have high rates false negatives and false positives. In 2015, a study from the American Proficiency Institute on about 18,000 testing results from 1999 to 2013 for Salmonella found false negative rates between 2% and 10% and false positive rates between 2% and 6%. Several Food Service Labs claim false positive rates of 5% to 50%.

False positives can create a resource-intensive burden on food companies. Reducing false negatives is important for public health as well as isolating and decontaminating the species within a facility.

The costs savings, but even more important the peace of mind that comes from a near fail-proof system is invaluable to the leading food brand and service labs we’ve been working with.

FST: What are the clearest areas of impact for NGS in food safety?

Ghorashi: The impact of NGS is going to be felt broadly because it will replace existing PCR systems for high-throughput safety testing. Across the food industry, wherever there are PCR systems, we will soon see NGS-based system that will be more comprehensive, accurate, and cost-effective.

And unlike some PCR techniques that can only detect up to five targets on one sample at a time, the targets for NGS platforms are nearly unlimited, with up to 25 million reads per sample, with 200 or more samples processed at the same time. This results in a major difference in the amount of information yielded.

FST: Do you have any additional comments on the pilot program or NGS in general?

Ghorashi: While I can’t talk about specific customers, I should note that our pilot program is already deployed across half of the U.S.’s third-party service labs as well as major food production companies engaged in high-volume, routine safety testing.

The majority of the food safety industry is well aware of how transformative NGS systems can be for both their food safety programs and their bottom line. This pilot will go a long ways toward demonstrating that NGS technology has arrived for primetime in the food safety industry.

We’re still accepting applications for the pilot, and we’re excited to help brands recognize the value of and move forward with this vital progression in testing. After the pilot phase, we’ll be rolling out the full platform at IAFP in July of this year.

We’ll keep you updated!

Food Fraud

Food Fraud Requires Companies to Think Like a Criminal

By Juliani Kitakawa, Veronica Ramos
No Comments
Food Fraud

In a two-question format, the authors discuss pressing issues in food fraud.

1. Where are the current hot spots for food fraud?

Food fraud activities have been known for centuries. For example, in ancient Rome and Athens, there were rules regarding the adulteration of wines with flavors and colors. In mid-13th century England, there were guidelines prescribing a certain size and weight for each type of bread, as well as required ingredients and how much it should cost. In the United States, back in 1906, Congress passed both the Meat Inspection Act and the original Food and Drugs Act, prohibiting the manufacture and interstate shipment of adulterated and misbranded foods and drugs. However, evidence and records of actions taken over those events were not officially collected.

It was not until 1985, when the presence of diethylene glycol (DEG) was identified in white wines from Austria, that authorities, retailers and consumers started to have serious concerns about the adulteration of food and the severity of its impact on consumers. In addition, there was increased interest to regulate, investigate and apply efforts to enforce requirements.

Other examples include the following:

  • 2005: Chili powder adulterated with Sudan (India)
  • 2008: Dairy products adulterated with melamine (China)
  • 2013: Beef substituted with horsemeat (UK)
  • 2013: Manuka honey where it was known that bees were not feeding from pollen of the Manuka bush (New Zealand)
  • 2016: Dried oregano adulterated with other dried plants (Australia)

This list can go on and on.

Lately there have been more cases of food fraud. Fortunately, even limited international databases are helping to identify the raw material origins of products in the supply chain that could be more exposed to adulteration. Also, food manufacturers, brokers and agents are conducting assessments to ensure that they are buying ingredients and products from sources, where food fraud could be prevented. The following products are identified as having more adulteration notifications:

  • Olive oil
  • Fish
  • Vegetable products with claims of “Organic”
  • Milk
  • Grains
  • Honey and maple syrup
  • Coffee and tea
  • Spices
  • Wine
  • Fruit Juices

2. What can companies do to mitigate the risk?

Control measures to prevent food fraud activities include the adequate evaluation and selection of suppliers, as well as the ‘suppliers of the suppliers’. Typical risk matrices of likelihood of occurrence versus consequence can be used to measure risk—and determine priorities for assessing and putting control measures in place. Assessments can be focused on points of vulnerabilities such as food substitution, mislabeling, adulterations and/or counterfeiting, usually due to economic advantages for one or more tiers in food chain production.

Other food fraud activities include effective traceability systems, monitoring current worldwide news and notifications on food fraud using international databases (EU-RASFF, USA- EMA NCFPD and USP, etc.), and product testing.

Product testing is becoming an important tool for the food industry to become confident in sourcing raw materials, ensuring the management of food fraud control measures, fulfilling applicable legal requirements, and ensuring the safety of consumers.

Product testing laboratories offer different kinds of testing methods depending on the required output; for example, if it is possible and requested, a targeted or non-targeted result.

Targeted analysis involves screening for pre-defined components in a sample:

  • Liquid chromatography
  • Gas chromatography
  • Mass spectrometry (LC-MS and GC-MS)
  • Nuclear magnetic resonance spectroscopy (NMR).
  • PCR technique

Non-targeted analysis aims to see any chemical present in the sample:

  • Isotopic measurement-determination of whether ethanol and vinegar and flavorings are natural or synthetic
  • Metabolomics: Maturation and shelf life
  • Proteomics: Testing for pork and beef additives in chicken, confectionery and desserts

Due to the importance of food fraud for a food safety management system, GFSI published Version 7.1 of Benchmarking Requirements, including subjects on food fraud, as vulnerability assessment. In 2018 all certification schemes have incorporated such requirements and started enforcing them.

Fraud cases threat consumer trust in products and services. Companies are learning to “think like a criminal” and put in place measures to prevent fraud and protect their products, their brands and their consumers.

Campylobacter Enrichment Broth

3M Launches New Molecular Method to Detect Campylobacter

Campylobacter Enrichment Broth

3M Food Safety has launched the 3M Molecular Detection Assay 2 – Campylobacter with 3M Campylobacter Enrichment Broth. Poultry producers now have a complete solution for simultaneous monitoring of poultry for both Salmonella and Campylobacter. It can perform up to 96 tests of multiple types in a 60-minute run.

The Enrichment Broth requires just five steps and eliminates the need for microaerophilic incubation, supplements, blood, organic solvents or autoclaving the broth, only requiring the addition of sterile water.

For more information, visit 3M’s product website.

Martin Easter, Hygiena
In the Food Lab

The New Normal: Pinpointing Unusual Sources of Food Contamination

By Martin Easter, Ph.D.
No Comments
Martin Easter, Hygiena

Shiga toxin-producing E. coli in dry flour, and then romaine lettuce. E. coli O104 in fenugreek sprout seeds. Recent announcements of foodborne illness outbreaks have begun involving unusual combinations of bacteria and foods. These out-of-the-ordinary outbreaks and recalls are a small but growing part of the 600 million documented food poisonings that occur worldwide every year according to the World Health Organization. Preventing outbreaks from these new combinations of pathogen and food demand a range of accurate tests that can quickly identify these bacteria. Over the past several years, outbreaks from unusual sources included:

  • E. coli O121 (STEC) in flour: Last summer, at least 29 cases of a E. coli O121 infection were announced in six Canadian provinces. The source arose from uncooked flour, a rare source of such infections because typically flour is baked into final products. Eight people were hospitalized, and public health officials have now included raw, uncooked flour as well as raw batter and dough as a source of this type of infection.
  • E. coli O104:H4 in fenugreek sprouts: One of Europe’s biggest recent outbreaks (affecting more than 4,000 people in Germany in 2011, and killing more than 50 worldwide) was originally thought to be caused by a hemorrhagic (EHEC) E. coli strain that from cucumbers, but was but was later found to be from an enteroaggregative E. coli (EAEC) strain in imported fenugreek seeds—the strain had acquired the genes to produce Shiga toxins.
  • Mycoplasma in New Zealand dairy cows: While not unusual in cattle, the incident reported in August marks the pathogen’s first appearance in cows in New Zealand, a country known for strict standards on agricultural hygiene. The microorganism is not harmful to people, but can drastically impact livestock herds.
  • Listeria monocytogenes in food sources: Listeria monocytogenes causes fewer but more serious incidence of food poisoning due to a higher death rate compared to Salmonella and Campylobacter. Whereas Listeria has been historically associated with dairy and ready to eat cooked meat products, recent outbreaks have been associated with fruit, and the FDA, CDC and USDA are conducting a joint investigation of outbreaks in frozen as well as in fresh produce.
  • Listeria in cantaloupe: In 2011, one of the worst foodborne illnesses recorded in the United States killed 20 and sickened 147, from Listeria monocytogenes that was found in contaminated cantaloupes from a farm in Colorado. The outbreak bloomed when normal background levels of the bacteria grew to deadly concentrations in multiple locations, from transport trucks to a produce washer that was instead designed for potatoes.

The outbreaks underscore the fundamental need to have a robust food safety program. Bacteria can colonize many different locations and the opportunity is created by a change in processing methods and/or consumer use or misuse of products. So robust risk assessment and preventative QA procedures need to be frequently reviewed and supported by appropriate surveillance methods.

Food safety and public health agencies like the European Food Safety Authority (EFSA) or the CDC have employed a wide range of detection and identification tests, ranging from pulse field gel electrophoresis (PFGE), traditional cell culture, enzyme immunoassay, and the polymerase chain reaction (PCR). In the case of Germany’s fenugreek-based E. coli outbreak, the CDC and EFSA used all these techniques to verify the source of the contamination.

These tests have certain advantages and disadvantages. Cell culture can be very accurate, but it depends on good technique and usually takes a long time to present results. PFGE provides an accurate DNA fingerprint of a target bacteria, but cannot identify all strains of certain microorganisms. Enzyme immunoassays are precise, but can produce false-positive results in certain circumstances and require microbiological laboratory expertise. PCR is very quick and accurate, but doesn’t preserve an isolate for physicians to test further for pathogenic properties.

Identification of the pathogens behind foodborne contamination is crucial for determining treatment of victims of the outbreak, and helps public health officials decide what tools are necessary to pinpoint the outbreak’s cause and prevent a recurrence. Rapid methods such as the polymerase chain reaction (PCR), which can quickly and accurately amplify DNA from a pathogen and make specific detection easier, are powerful tools in our efforts to maintain a safe food supply.

Recently, scientists and a third-party laboratory showed that real-time PCR assays for STEC and E. coli O157:H7 could detect E. coli O121, O26 and O157:H7 in 25-g samples of flour at levels satisfying AOAC method validation requirements. The results of the study demonstrated that real-time PCR could accurately detect stx, eae and the appropriate E. coli serotype (O121, O26 or O157:H7) with no statistical difference from the FDA’s Bacteriological Analytical Manual (BAM) cell culture method.

Agencies like the World Health Organization and CDC have repeatedly stated that historical records of food poisoning represent a very small percentage of true incidents occurring every year worldwide. Many of today’s most common food pathogens, like Listeria monocytogenes, E. coli O157:H7 or Campylobacter jejuni, were unknown 30 years ago. It’s not clear yet if unusual sources of contamination arise from increasing vigilance and food safety testing, or from an increasingly interdependent, globally complex food supply. No matter the reason, food producers, processors, manufacturers, distributors and retailers need to keep their guard up, using the optimum combination of tools to protect the public and fend off food pathogens.