Tag Archives: Testing

Jill Ellsworth, Willow Industries
FST Soapbox

Modeling Cannabis Safety from Food and Beverage Quality Regulations

By Jill Ellsworth
1 Comment
Jill Ellsworth, Willow Industries

There’s a reason you can eat or drink pretty much anything you want from American grocery stores and not get sick. Food manufacturing is highly regulated and subject to rigorous quality control.

Before food and beverages hit store shelves, the manufacturer must have a Hazard Analysis Critical Control Point (HACCP) system in place. The HACCP system requires that potential hazards—biological, chemical and physical— be identified and controlled at specific points in the manufacturing process. In addition, fresh foods undergo a kill-step. This is the point in the manufacturing or packaging process where food is treated to minimize and remove deadly pathogens like bacteria, mold, fungus and E. coli.

Generally speaking, when cannabis hits dispensary shelves, a less stringent set of rules apply, despite the fact that cannabis is ingested, inhaled and used as medicine. Cultivators are required to test every batch, but each state differs in what is required for mandated testing. Compared to the way food is regulated, the cannabis industry still has a long way to go when it comes to consumer safety—and that poses a considerable public health risk. In the early stages of legalization, the handful of legal states did not have rigid cannabis testing measures in place, which led to inconsistent safety standards across the country. State governments have had a reactionary approach to updating testing guidelines, by and large implementing stricter standards in response to product recalls and customer safety complaints. While local regulators have had the best intentions in prioritizing consumer safety, it is still difficult to align uniform cannabis testing standards with existing food safety standards while cannabis is a Schedule I substance.

The stark differences in safety measures and quality controls were first obvious to me when I moved from the food and beverage industry into the cannabis industry. For five years, I operated an organic, cold-pressed juice company and a natural beverage distribution company and had to adhere to very strict HACCP guidelines. When a friend asked me for advice on how to get rid of mold on cannabis flower, a light bulb went off: Why was there no kill step in cannabis? And what other food safety procedures were not being followed?

What to know more about all things quality, regulatory and compliance in the cannabis industry? Check out Cannabis Industry Journal and sign up for the weekly newsletterThe current patchwork of regulations and lack of food safety standards could have dire effects. It not only puts consumer health in jeopardy, but without healthy crops, growers, dispensaries and the entire cannabis supply chain can suffer. When a batch of cannabis fails microbial testing, it cannot be sold as raw flower unless it goes through an approved process to eliminate the contamination. This has severe impacts on everyone, starting with the cultivator. There are delays in harvesting and delivery, and sometimes producers are forced to extract their flower into concentrates, which really cuts into profits. And in the worst cases, entire crop harvests may have to be destroyed.

So, what do cannabis cultivators and manufacturers have to fear the most? Mold. Out of all the pathogens, mold is the most problematic for cannabis crops, perhaps because it is so resilient. Mold can withstand extreme heat, leaving many decontamination treatments ineffective. And most importantly, mold can proliferate and continue to grow. This is commonplace when the cannabis is stored for any length of time. Inhaling mold spores can have serious adverse health effects, including respiratory illness, and can even be deadly for immunocompromised consumers using it for medical reasons.

What the industry needs is a true kill step. It’s the only way to kill mold spores and other pathogens to ensure that they will not continue to grow while being stored. States that mandate microbial testing will benefit from the kill step because more cultivators will be in compliance earlier in the process. In states that don’t require comprehensive microbial testing, like Washington and Oregon, the kill step is a critical way to provide consumers with a preemptive layer of protection. Microbial testing and preventative decontamination measures encourage customer brand loyalty and prevents negative press coverage.

Adopting a HACCP system would also build additional safeguards into the system. These procedures provide businesses with a step-by-step system that controls food safety, from ingredients right through to production, storage and distribution, to sale of the product and service for the final consumer. The process of creating HACCP-based procedures provides a roadmap for food safety management that ultimately aligns your staff around the goal of keeping consumers safe.

It’s high time for the cannabis industry to adopt FDA-like standards and proactively promote safety measures. Cannabis growers must implement these quality controls to ensure that their products are as safe to consume as any other food or drink on the market. Let’s be proactive and show our consumers that we are serious about their safety.

Aaron Riley, CannaSafe
In the Food Lab

How To Ensure Cannabis and CBD Edibles And Beverages Are Safe

By Aaron Riley
No Comments
Aaron Riley, CannaSafe

As cannabis and CBD edibles and beverages gain in popularity among consumers, the rush to cash-in on market opportunities has resulted in an influx of unregulated and untested products. Recently the FDA increased its scrutiny of cannabis and CBD company websites and social media accounts to make sure they were not making unverified or misleading marketing statements about their products.

To exacerbate the problem of unregulated products, recent scares around vape-related hospitalizations have flooded the news, and the public is looking to the cannabis industry for answers about what it will do to ensure CBD and cannabis products are safe for consumption.

The first step the cannabis business community can take is educating the public on the two types of edibles— tetrahydrocannabinol (THC) and cannabidiol (CBD). THC is heavily regulated. Every batch must be tested before it is released to retail ensuring labeling and dosages are consistent.

Since CBD does not have psychoactive properties, most products do not go through the same testing standards and are far less regulated. An estimated 75% of CBD-only companies do not test their products. Even worse, independent testing has shown that CBD labels are often incorrect or inconsistent with its dosage and ingredient labels.

Both cannabis and CBD companies must advocate for a more regulated and legitimate market. Stricter regulations and testing standards will eventually weed out the bad players who are hoping to make a quick buck from those that intend to manufacture quality products that can benefit the health of consumers.

Short Cuts To Boost Profits

The current vape pen crisis underscores the lack of regulation and inconsistency in the CBD market. CBD-exclusive vapes are more likely to use cutting agents, whereas licensed THC vape companies are more likely to use pure cannabis oils and are required to undergo quality control testing.

Using cutting agents may lower operating costs, but often results in an inferior or dangerous product. Cutting agents also inhibit crystallization in CBD oils and increase the shelf life of a product. The cost of production for pure THC or CBD oil is $5–6 per gram, but a cutting agent can reduce the cost down to $0.10–$2 per gram.

With edibles, untested CBD products can introduce Salmonella or E.coli into the supply chain. This oversight could severely hurt the reputation of growers and manufacturers if a serious outbreak occurred.

Learn more about important regulatory & quality issues in the cannabis space from Cannabis Industry JournalThe Solution Is in Testing

Unlike food manufacturing, where quality controls are in place at the plant, the quality measures for edibles happens in a lab, after a product is manufactured.

Labs test edibles for potency. Both THC and CBD are used for medicinal purposes, and potency testing is critical for accurate dosing. A patient under or over dosing, or taking a poor quality CBD product with additives could detrimentally affect their long-term health.

They will also test for product contamination. Both CBD and THC cannabis can become contaminated with microbes (i.e., mold, mildew, bacteria and yeast), pesticides and heavy metals throughout the process of growing, cultivation and processing. Contamination is especially concerning because many medical marijuana patients are immunosuppressed and cannot fight off potentially dangerous infections and illnesses arising from these contaminants.

But even for the general population, cannabis and CBD contamination can cause serious health issues. Molds and bacteria such as aspergillus, Salmonella and E. coli present safety risks, and toxicity from sustained exposure to heavy metals can lead to high blood pressure, heart issues and kidney failure, among other issues. Fortunately for consumers, cannabis products sold in licensed dispensaries must all undergo contamination and quality control testing per state regulations.

However, because quality control measures are not required for edible manufacturers, there is no oversight that food-grade ingredients are used or that practices to avoid cross-contamination are used.

What Companies Can Do To Win Back Trust

Customers around the country are rightfully concerned about the safety and quality of their cannabis and CBD products in light of recent news surrounding vape-related illnesses. This is the perfect opportunity for manufacturers and consumer brands to seize on the subject and educate consumers about cannabinoids so they aren’t turned off from incorporating CBD into their lifestyles.

  1. First and foremost, test all products. At a minimum, companies should be adhering to state cannabis market regulations, even if they are just producing CBD. As the FDA rolls out more concrete regulations for CBD, which was only federally legalized last year, it is in the best interest of all CBD companies to meet FDA guidelines preemptively so products can pass inspection at a later date.
  2. Find a good credible lab to help with formulations and inputs. With edibles and beverages, there is more room to introduce contaminants within that scope.
  3. Hire food safety experts to help elevate safety standards and meet FDA regulations. Some forward-thinking companies are starting to hire quality experts from food manufacturing to get ready for broader federal acceptance.
  4. Help educate consumers on why the brand is better, based on inputs and testing.

Consumers should also conduct their own research regarding individual CBD companies’ supply chains and manufacturing standards. Transparent companies will do this proactively, providing cultivation information and lab results for their customers.

In the end, the safest place to buy cannabis and CBD products is a licensed dispensary. It is the responsibility of growers, distributors, manufacturers and retailers to keep the legal market safe and free from contaminants that could threaten the industry. The regulated cannabis space has advanced significantly in the past few years, and companies must set the highest manufacturing standards to maintain this forward momentum. Education and testing are the best solutions to ensure a safe and trusted cannabis marketplace.

Sasan Amini, Clear Labs
FST Soapbox

Beyond the Results: What Can Testing Teach Us?

By Sasan Amini
No Comments
Sasan Amini, Clear Labs

The microbiology lab will increasingly be understood as the gravitational center of big data in the food industry. Brands that understand how to leverage the data microbiology labs are producing in ever larger quantities will be in the best position to positively impact their bottom line—and even transform the lab from a cost center to a margin contributor.

The global rapid microbiology testing market continues to grow at a steady pace. The market is projected to reach $5.09 billion by 2023, up from $3.45 billion in 2018. Increased demand for food microbiology testing—and pathogen detection in particular—continues to drive the overall growth of this sector. The volume of food microbiology tests totaled 1.14 billion tests in 2016—up 15% from 2013. In 2018 that number is estimated to have risen to 1.3 billion tests, accounting for nearly half the overall volume of industrial microbiology tests performed worldwide.

The food industry is well aware that food safety testing programs are a necessary and worthwhile investment. Given the enormous human and financial costs of food recalls, a robust food safety testing system is the best insurance policy any food brand can buy.

We are going through a unique transition where food safety tests are evolving from binary tests to data engines that are capable of generating orders of magnitude of more information. This creates a unique opportunity where many applications for big data collected from routine pathogen testing can help go beyond stopping an outbreak. Paired with machine learning and other data platforms, these data have the opportunity to become valuable, actionable insights for the industry.

While some of these applications will have an impact on fundamental research, I expect that big data analytics and bioinformatics will have significant opportunity to push the utilities of these tests from being merely a diagnostic test to a vehicle for driving actions and offering recommendations. Two examples of such transformations include product development and environmental testing.

Food-Safety Testing Data and Product Development

Next-generation-sequencing (NGS) technologies demonstrate a great deal of potential for product development, particularly when it comes to better understanding shelf life and generating more accurate shelf-life estimates.

Storage conditions, packaging, pH, temperature, and water activity can influence food quality and shelf life among other factors. Shelf-life estimates, however, have traditionally been based on rudimentary statistical models incapable of accounting for the complexity of factors that impact food freshness, more specifically not being able to take into consideration the composition and quantity of all microbial communities present on any food sample. These limitations have long been recognized by food scientists and have led them to look for cost-effective alternatives.

By using NGS technologies, scientists can gain a more complete picture of the microbial composition of foods and how those microbial communities are influenced by intrinsic and extrinsic factors.

It’s unlikely that analyzing the microbiome of every food product or unit of product will ever be a cost-effective strategy. However, over time, as individual manufacturers and the industry as a whole analyze more and more samples and generate more data, we should be able to develop increasingly accurate predictive models. The data generation cost and logistics could be significantly streamlined if existing food safety tests evolve to broader vehicles that can create insights on both safety and quality indications of food product simultaneously. By comparing the observed (or expected) microbiome profile of a fresh product with the models we develop, we could greatly improve our estimates of a given product’s remaining shelf life.

This will open a number of new opportunities for food producers and consumers. Better shelf-life estimates will create efficiencies up and down the food supply chain. The impact on product development can hardly be underestimated. As we better understand the precise variables that impact food freshness for particular products, we can devise food production and packaging technologies that enhance food safety and food quality.

As our predictive models improve, an entire market for these models will emerge, much as it has in other industries that rely on machine learning models to draw predictive insights from big data.

Data Visualization for Environmental Monitoring

In the past one to two years, NGS technologies have matured to the point that they can now be leveraged for high-volume pathogen and environmental testing.

Just as it has in other industries, big data coupled with data visualization approaches can play a mainstream role in food safety and quality applications.

Data visualization techniques are not new to food safety programs and have proven particularly useful when analyzing the results of environmental testing. The full potential of data visualizations has yet to be realized, however. Visualizations can be used to better understand harborage sites, identifying patterns that need attention, and visualize how specific strains of a pathogen are migrating through a facility.

Some of this is happening in food production facilities already, but it’s important to note that visualizations are only as useful as the underlying data is accurate. That’s where technologies like NGS come in. NGS provides the option for deeper characterization of pathogenic microorganisms when needed (down to the strain). The depth of information from NGS platforms enables more reliable and detailed characterization of pathogenic strains compared to existing methods.

Beyond basic identification, there are other potential use cases for environmental mapping, including tracking pathogens as they move through the supply chain. It’s my prediction that as the food industry more broadly adopts NGS technologies that unify testing and bioinformatics in a single platform, data visualization techniques will rapidly advance, so long as we keep asking ourselves: What can the data teach us?

The Food Data Revolution and Market Consolidation

Unlike most PCR and immunoassay-based testing techniques, which in most cases can only generate binary answers, NGS platforms generate millions of data points for each sample for up to tens to hundreds of samples. As NGS technologies are adopted and the data we collect increases exponentially, the food safety system will become the data engine upon which new products and technologies are built.

Just as we have seen in any number of industries, companies with access to data and the means to make sense of it will be in the best position to capitalize on new revenue opportunities and economies of scale.

Companies that have adopted NGS technologies for food safety testing will have an obvious advantage in this emerging market. And they won’t have had to radically alter their business model to get there. They’ll be running the same robust programs they have long had in place, but collecting a much larger volume of data in doing so. Companies with a vision of how to best leverage this data will have the greatest edge.

FDA

FDA’s Pesticide Analysis Finds Most Foods Tested Below EPA Tolerance Levels

By Food Safety Tech Staff
No Comments
FDA

Today FDA released the results of its yearly report on pesticide residues, and the good news is that of the 6504 samples taken, most of them were below EPA tolerance levels. As part of the Pesticide Residue Monitoring Program for FY 2017, FDA tested for 761 pesticides and industrial chemicals in domestic and imported foods for animals and humans. The following are some highlights of the FDA’s findings:

  • Percentage of foods compliant with federal standards
    • 96.2% of domestic human foods
    • 89.6% of imported human foods
    • 98.8% domestic animal foods
    • 94.4% imported animal foods
  • Percentage of food samples without pesticide residues
    • Milk and game meat: 100%
    • Shell egg: 87.5%
    • Honey: 77.3%
  • Percentage of food samples without glyphosate or glufosinate residues
  • Milk and eggs: 100%
  • Corn: 82.1%
  • Soybeans: 60%

“Ensuring the safety of the American food supply is a critical part of the work of the U.S. Food and Drug Administration. Our annual efforts to test both human and animal foods for pesticide residues in foods is important as we work to limit exposure to any pesticide residues that may be unsafe,” said Susan Mayne, Ph.D., director of FDA’s CFSAN, in an agency release. “We will continue to do this important monitoring work, taking action when appropriate, to help ensure our food supply remains among the safest in the world.”

magnifying glass

Advances in GC-MS/MS Enhance Routine Detection of Dioxins and Dioxin-like Compounds in Food and Animal Feed

By Richard Law
1 Comment
magnifying glass

Dioxins are highly toxic organic compounds that can remain in the environment for extended periods. These persistent organic pollutants (POPs), which include polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs), are mainly generated by the combustion or manufacture of chlorine-containing materials such as plastics. Dioxins and other closely related POPs, such as polychlorinated biphenyls (PCBs), are classed as carcinogenic by the United States Environmental Protection Agency, and present a significant threat to human health even at low levels.

Dioxins and PCBs can enter the food chain when livestock consume contaminated animal feed, and can accumulate in the fatty tissues of animals due to their high fat-solubility. As a result, over 90% of human exposure to dioxins and PCBs is through the consumption of meat, fish, dairy and other foods of animal origin.1 Given the health risks posed by dioxins and PCBs, effective food testing workflows are essential to ensure products do not exceed regulatory-defined safe levels.

GC-MS/MS: A Robust Technique for Analyzing Dioxins and PCBs in Food and Animal Feed

To control human exposure to PCDDs, PCDFs and PCBs from the food chain, global regulatory bodies have established maximum levels (MLs) and action levels (ALs) for various POPs in food products, as well as approved analytical methods for food testing laboratories to enforce these standards. In the European Union (EU), for example, European Commission regulations 2017/644 and 2017/771 outline sampling, sample preparation and analysis protocols for the detection of dioxins and other dioxin-like compounds in food and animal feedstuffs.2,3

With food testing laboratories tasked with handling potentially hundreds of samples every day, these workflows must be supported by robust and reliable analytical technologies that can confidently identify and accurately quantify dioxins and PCBs with minimal maintenance requirements in order to minimize downtime and maximize throughput.

Thanks to ongoing improvements in the robustness and sensitivity of gas chromatography-triple quadrupole mass spectrometry (GC-MS/MS) systems, regulations were updated in 2014 to permit this technique as an alternative to gas chromatography-high resolution mass spectrometry (GC-HRMS) for confirmatory analysis and for the control of MLs and ALs. The latest GC-MS/MS systems are capable of exceptionally reliable performance for the routine analysis of dioxins and PCBs, providing accurate and sensitive quantification of these compounds even at trace levels.

Case Study: Sensitive and Reliable Determination of Dioxins Using GC-MS/MS

The performance of modern GC-MS/MS systems was evaluated in a recent study involving the confirmatory analysis and quantification of 17 PCDDs and PCDFs, and 18 dioxin-like and non-dioxin-like PCBs in solvent standards and various food and feedstuff samples. The samples were analyzed using a triple quadrupole GC-MS/MS system equipped with the advanced electron ionization source (AEI) and a TG-Dioxin capillary GC column. Two identical GC-MS/MS systems in two separate laboratories were used to assess the reproducibility of the method.

Extraction was performed by Twisselmann hot extraction or pressurized liquid extraction. The automated clean-up of the extracts was performed using a three-column setup, comprising multi-layered acidic silica, alumina and carbon columns. Two fractions were generated per sample (the first containing non-ortho PCBs, PCDDs and PCDFs, and the second containing mono-ortho and di-ortho PCBs and indicator PCBs) and these were analyzed separately. The analytical method gave excellent separation of all the PCDD, PCDF and PCB congeners in less than 45 minutes.

Given the high sensitivity of modern GC-MS/MS instruments, a calibration-based approach was used to determine limits of quantitation (LOQs) of the analytical system. Using calibration standards at the LOQ and subsequent check standards at this level enabled the performance of the method to be assessed throughout the analytical sequence. This also allowed LOQs for the individual congeners to be determined, assuming a fixed sample weight. Individual congener LOQs could be applied to upper-bound, middle-bound and lower-bound toxicity equivalence (TEQ) results by substituting the result of any congener that fell below the lowest calibration point with this value multiplied by the toxicity equivalence factor (TEF) of the congener.

To evaluate the response factor deviation over the course of the analytical sequences, standards at the specified LOQ were analyzed at the start, during and end of each run. Using a nominal weight of 2 g, and assuming 100% 13C-labeled standard recovery and all natives were less than the LOQ in the sample, a minimum upper-bound value of 0.152 pg/g WHO-PCDD/F-TEQ was determined. This met regulatory requirements for reporting at 1/5th of the ML upper-bound sum TEQ for all food and feedstuffs with a nominal intake of 2 g, with the exception of guidance associated with liver of terrestrial animals and food for infants or young children, which both have legal limits defined on a fresh weight basis. In these cases, either a larger sample intake or a magnetic sector instrument would be required. All of the calibration sequences demonstrated response factor %RSDs within EU regulations, highlighting the suitability of the method.

To demonstrate the performance of the GC-MS/MS system, six replicate extractions of a mixed fat quality control sample (QK1) were prepared, split between the two sites and analyzed at regular intervals throughout the analytical sequences (14 injections in total). The measured WHO-PCDD/F-TEQ values for congener were in excellent agreement with the reference value provided by the EU Reference Laboratory for Halogenated POPs in Feed and Food, and the upper bound WHO-PCDD/F-TEQ value did not deviate by more than 6% from the reference value for all 14 measurements (Figure 1). The deviation between the upper-bound and lower-bound WHO-PCDD/F-TEQ for each measurement was consistently less than 1.2%, well below the maximum limit of 20% necessary to support compliance with EU regulations.

pper- and lower-bound WHO-PCDD/F-TEQ values
Figure 1. Upper- and lower-bound WHO-PCDD/F-TEQ values for all 14 measurements of the QK1 mixed animal fat quality control sample, for six replicate extractions.

Robust Routine Analysis of Dioxin and Dioxin-like Compounds

To assess the robustness of the GC-MS/MS system, the PCDD, PCDF and non-ortho PCB extracts were pooled into a mixed matrix sample and analyzed more than 161 injection sequences across a period of approximately two weeks. Each sequence consisted of 40 matrix injections and 40 LOQ standards, interspersed with nonane blanks. No system maintenance, tuning or user intervention was undertaken throughout the two-week study. Figure 2 highlights the exceptional peak area stability achieved for selected PCDD and PCDF congeners.

Peak area repeatability
Figure 2. Absolute peak area repeatability over two weeks of analysis for selected PCDD and PCDF congeners in a pooled matrix sample (%RSD and amounts on column are shown for each congener).

These results highlight the exceptional levels of day-to-day measurement repeatability offered by the latest GC-MS/MS systems. By delivering consistently high performance without the need for extensive maintenance steps, modern GC-MS/MS systems are maximizing instrument uptime and increasing sample throughput for routine POP analysis workflows.

Conclusion

Developments in GC-MS/MS technology, namely the advanced electron ionization source, are pushing the limits of measurement sensitivity, repeatability and robustness to support the needs of routine dioxin and PCBs analysis in food and feed samples. By minimizing instrument downtime while maintaining exceptional levels of analytical performance, these advanced systems are helping high-throughput food testing laboratories to analyze more samples and ultimately better protect consumers from these harmful pollutants.

References

  1. Malisch, R. and Kotz, A. (2014) Dioxins and PCBs in feed and food – Review from European perspective. Sci Total Environ, 491, 2-10.
  2. European Commission. Commission Regulation (EU) 2017/644, Off J Eur Union, 2017, L92 9-34.
  3. European Commission. Commission Regulation (EU) 2017/771, Off J Eur Union, 2017, L115 22-42.

Acknowledgements

This article is based on research by Richard Law and Cristian Cojocariu (Thermo Fisher Scientific, Runcorn, UK), Alexander Schaechtele (EU Reference Laboratory for Halogenated POPs in Feed and Food, Freiburg, Germany), Amit Gujar (Thermo Fisher Scientific, Austin, US), and Jiangtao Xing (Thermo Fisher Scientific, Beijing, China).

2019 Food Safety Consortium Conference & Expo

Mark Your Calendars: 2019 Food Safety Consortium Includes Panels on Recalls, Food Defense and Supply Chain Transparency

By Maria Fontanazza
No Comments
2019 Food Safety Consortium Conference & Expo

The 2019 Food Safety Consortium Conference & Expo kicks off on Tuesday, October 1 and is packed with two-and-a-half days of informative sessions on a variety of topics that are critical to the food safety industry. We invite you to check out the full agenda on the event website, but below are several event highlights that you should plan on attending.

  • Opening Keynote: Frank Yiannas, Deputy Commissioner for Food Policy and Response, FDA
  • Recalls Panel Discussion: Led by Rob Mommsen, Director of Global Quality & Food Safety, Sabra Dipping Company
  • Food Defense Panel: Led by Steven Sklare, REHS, CP-FS, LEHP. Invited Panelists include Jason P. Bashura, MPH, RS, Sr. Mgr., Global Food Defense, PepsiCo and Jill Hoffman, Director, Global Quality Systems and Food Safety at McCormick & Company and Clint Fairow, M.S. Global Food Defense Manager, Archer Daniels Midland Company
  • “Validation Considerations and Regulations for Processing Technologies”: General Session presented by Glenn Black, Ph.D., Associate Director for Research, Division of Food Processing Science and Technology (DFPST), Office of Food Safety (OFS), CFSAN, FDA
  • “Food Safety Leadership: Earning respect – real-life examples of earning and maintaining influence as a Food Safety leader”: Panel Discussion moderated by Bob Pudlock, President, Gulf Stream Search
  • Supply Chain Transparency Panel Discussion: Led by Jeanne Duckett of Avery Dennison
  • Taking an Aggressive Approach to Sanitation: Planning for a Contamination Event: Presented by Elise Forward, President, Forward Food Safety
  • Three Breakout Tracks: Food Safety Leadership; Food Testing & Analysis and Sanitation and Operations

Register by September 13, 2019 for a special discount!

Frank Yiannas, VP of Food Safety, Walmart
Watch this video from when Frank Yiannas was the vice president of food safety at Walmart. He presented at the 2015 Food Safety Consortium.

Steven Sklare, USP, Aaron Biros, Food Safety Tech
Watch this video of Steven Sklare speaking with Aaron Biros of Cannabis Industry Journal at the 2017 Food Safety Consortium.

Bob Pudlock, Gulf Stream Search
Read Bob Pudlock’s exclusive series on Food Safety Tech, Architect the Perfect Food Safety Team.

Elise Forward, Forward Food Solutions
Elise Forward discusses how to take food defense beyond the four walls of your business.
Emily Kaufman, Emport, Allergens
Allergen Alley

Skip Validation, You’re Asking for Problems

By Emily Kaufman
No Comments
Emily Kaufman, Emport, Allergens

Running an unvalidated program or product is like betting your life’s savings on a horse because you overheard a “surefire tip” outside the racetrack, or driving around without any mirrors.

To put it less dramatically: Skipping validation is asking for problems. But what does validation mean, how much is necessary, and what’s the best way to include it in your plans?

In order to start understanding validation, we must first break it down into two main categories: Product validation and process validation. From there, it’s important to look at whether something has been broadly validated for general use, and whether it has been narrowly validated for use in your specific situation. That last question is where people often struggle: How can we ensure this product or process is validated for use in the way that we plan to use it?

Validating an on-site allergen test kit requires a few different layers of research and testing. Taking the time to carefully design and vet a validation process may seem tedious, and it may require some additional up-front costs—but in the long run, it’s the only way to ensure you are spending your money on a test kit that works. And if you’re using an allergen test kit that doesn’t actually detect allergens in your facility—best-case scenario, you’re wasting money and time. Worst-case scenario, you’re headed straight for a recall and you won’t see it coming until your customers get sick.

If you are buying a test to determine the absence or presence of allergens in your facility (specific or general), you’ll likely ask the kit manufacturer if the test kit has been validated. This validation can come in many forms, most commonly:

  • Third party validation (eg., AOAC)
  • Internally produced validation documents or whitepapers
  • Published studies

A product with more validation (third-party certifications, studies, whitepapers) isn’t necessarily better than a product with less. It may have simply been on the market longer or be produced by a company that allocates its funding differently. However, validation documents can be very comforting when reviewing a product, as they provide a starting point for your own research. When you are reviewing validation data, ask yourself a few questions:

  • Does this data cover products like mine?
    • Are the ingredients similar (raw meat, ice cream, spices, etc.)?
    • Are the preparation processes similar (heat, fermentation, etc.)?
  • Does this data cover an environment like mine?
    • Will the tests be run the same way in my facility as in the data?
    • Is the contamination being introduced in a way and amount that feels realistic to the risk factors I know about in my facility?
  • Does the data mention any complicating factors (and do I need to care about them)?
    • Are there ingredients known to cross-react or cause false negatives?
    • Are there processes known to change the LOD or cause false negatives?
  • If I am aware of limitations with other similar test kits, are those limitations addressed in the data for this test kit as well?

To give an example, let’s imagine you make premium ice cream and are reviewing allergen test kits that look for peanuts and almonds in product, in rinsewater and on surfaces. You’ll want to ask questions like:

  • How does the kit perform in a high-fat environment?
  • Does the validation data cover product, rinsewater and surfaces?
  • Are there ingredients in our facility that are called out as cross-reactive (or otherwise troublesome)?
  • Do our ingredients get exposed to temperatures, pH levels, or other processes that impact the LOD?

You might learn, for example, that one of the matrices tested in validation was ice cream. If so: Wonderful! That’s a vote of confidence and a great starting point. Or maybe you learn that the kit in question isn’t recommended for matrices that include an ingredient in your formulation. If so: That’s equally wonderful! Now you know you need a different solution. Or maybe the instructions on your current peanut test kit indicate that heavily roasted peanuts have a higher detection limit than raw peanuts, but this new test kit only has data for raw peanuts. If so: OK! You have more research to do, and that’s fine too.

In short: Pre-existing product validation data is a helpful starting point for determining whether or not an allergen test kit MIGHT work well in your facility—but it doesn’t eliminate the need for you to run your own internal validation study.

Once you’ve identified an allergen test kit that you want to use in your facility, you’ll want to prove that it can work to identify contamination in your specific environment. This is where a more narrowly tailored validation comes into play. Your test kit provider may have resources available to help you design an internal validation. Don’t be afraid to ask for help! A reputable test kit provider should care not just about making the sale, but also about making your food safer.

Before you even order a new test kit, you should have a good idea of how your validation process is going to work. It’s important to have both the study design and study outcome on file. Here are some possible additions for your internal validation study:

Validating that an allergen test kit can reliably prove your surfaces are clean of said allergen:

  • Test the surface prior to cleaning, after the allergen in question has been run. Do you see positive results? If not, then a negative result after cleaning is essentially meaningless.
  • Test the surface after cleaning. Do you see negative results? If not, it could mean a problem with your cleaning process—or a strange interference. Both require further research.
  • If your products encounter multiple surfaces (eg., stainless steel and also ceramic), test them all with before and after testing.

Validating that an allergen test kit can reliably prove your rinsewater is free of said allergen:

  • Test water from the beginning of the cleaning cycle as well as the end. Do you see a change in results, from positive to negative?
  • If you don’t ever see the allergen present in your rinsewater, you may want to “spike” a sample by adding a small amount of the product that contains the allergen into the rinsewater you’ve collected. Could it be that something in your cleaning protocol or some aspect of your matrix is affecting the detection limit?

Validating that an allergen test kit can reliably prove your ingredients or finished products are free of said allergen:

  • Test a product that you know contains the allergen but is otherwise similar. Keep in mind that some allergen test kits can be overloaded and can show false negatives if too much allergen is present in the sample—if you aren’t sure whether the test kit you are trialing has this limitation, ask your supplier. Do you see a positive?
  • Have you encountered batches of your product with accidental cross-contamination from the allergen in question? If so, and you have some of that batch archived, run a test on it. Would this kit have identified the problem?
  • Do you have a batch or lot of product that has been analyzed by a third-party lab? If so, do your results in-house match the lab’s results?
  • Run—or ask a lab to run—a spiked recovery. This is especially important if there is no pre-existing data on how the test kit works against your specific matrices.
    • Some test kit manufacturers can provide this service for you—you would simply need to send them the product, and they can add various amounts of allergen into the product and confirm that the test kit shows positive results.
    • Some kit manufacturers or other suppliers can send you standards that have known quantities of allergen in them. You can mix these into your product and run tests, and confirm that you get positive results when expected.
    • You may want to simply do this on your own, by adding small quantities of the allergen into the sample and running tests. However, take care to be especially careful with your documentation in case questions arise down the line.
  • No matter how the spiked recovery is being run, consider these two factors:
    • Be sure you’re including what could be a realistic amount of contamination—if you’re concerned about catching 25ppm of allergen, loading up your sample with 2000ppm won’t necessarily help you prove anything.
    • The matrix of your allergen-containing foods is just as important as the matrix of your allergen-free foods. If your allergen has been fermented, roasted, pressurized, etc. —your spike needs to be processed in the same way. If you aren’t sure how to think about your matrices, this previous Allergen Alley post is a good starting place.

Once you’ve proven that the test kit in question can in fact show positive results when traces of allergen are present, you can confidently and comfortably incorporate it into your larger allergen control plan. If your matrices change, you’ll want to re-validate whatever’s new.

While it can be tempting to rely on a kit’s general validation, taking the extra step to validate your unique matrices is an essential part of a truly robust food safety plan. If you’re stumped for how to begin, contact your kit provider—after all, you share the same goals: Safe, allergen-free food for consumers who rely on you to keep themselves and their families healthy and well fed.

AOAC International

AOAC Sinks Teeth into Cannabis Testing, Launches Food Fraud Program

By Food Safety Tech Staff
No Comments
AOAC International

Last week Cannabis Industry Journal, a sister publication of Food Safety Tech, published its interview with AOAC International officials about the organization’s commitment to cannabis lab testing, where it sees this area headed in the future and the launch of its food authenticity and fraud program. AOAC first entered the realm of cannabis testing a few years ago and is making strides to get further involved with “methods regarding chemical contaminants in cannabis, cannabinoids in various foods and consumables, as well as microbial organisms in cannabis,” according to the article. AOAS also recently launched a food authenticity and fraud program to develop standards and methods geared toward economically adulterated foods. Read more about AOAC’s latest development on the food front as well as its push in cannabis lab testing in the article, “Spotlight on AOAC: New Leadership, New Initiatives in Cannabis and Food”.

Food Safety Consortium - October 1-3, 2019 - Schaumburg, IL

Industry Experts Darin Detwiler and Randy Phebus Join Food Safety Consortium Conference & Expo Advisory Board

By Food Safety Tech Staff
No Comments
Food Safety Consortium - October 1-3, 2019 - Schaumburg, IL

EDGARTOWN, MA, Feb. 19, 2019 – Innovative Publishing Co., the publisher of Food Safety Tech and organizer of the Food Safety Consortium Conference & Expo has added two distinguished industry leaders to its Advisory Board for this year’s Consortium event, which takes place October 1–3. Randall Phebus, Ph.D., interim director at the Food Science Institute and professor of food safety & defense at Kansas State University, will serve as chairperson for the Testing track at the Food Safety Consortium Conference & Expo, and Darin Detwiler, lead faculty for regulatory affairs of food and food industry, and assistant teaching professor at Northeastern University, will chair the Food Safety Leadership and Management track. Detwiler and Phebus will have a significant role in organizing these tracks to ensure that the sessions are accurate, relevant and meaningful for attendees.

“The addition of Darin Detwiler and Randy Phebus to the Food Safety Consortium Conference & Expo Advisory Board is an important step in further expanding the wealth of expertise brought to this annual event,” said Rick Biros, president of Innovative Publishing Co., Inc. and director of the Food Safety Consortium Conference and Expo. “Darin and Randy are highly respected professionals in this industry, and I am delighted to work with them and to help deliver their insights to Consortium attendees.”

2018 Food Safety Supply Chain Conference, Blockchain
A dynamic panel about blockchain, led by Darin Detwiler, Director: Regulatory Affairs of Food and Food Industry, Northeastern University at the 2018 Food Safety Supply Chain Conference

Detwiler has been a member of the Food Safety Tech and Food Safety Consortium Advisory Board for two years and has made strong contributions to the content at the organization’s events, including most recently leading panel discussions on blockchain at last year’s Food Safety Supply Chain Conference and the 2018 Food Safety Consortium. Phebus is joining the Advisory Board for 2019 and will be providing critical perspectives in the area of food microbiology, food safety testing and environmental control.

Detwiler and Phebus join Angela Anandappa, Ph.D., who was announced as the chairperson for the 2019 Food Safety Consortium Conference & Expo’s Sanitation track.

About Food Safety Tech

Food Safety Tech publishes news, technology, trends, regulations, and expert opinions on food safety, food quality, food business and food sustainability. We also offer educational, career advancement and networking opportunities to the global food industry. This information exchange is facilitated through ePublishing, digital and live events.

About the Food Safety Consortium Conference and Expo

The Food Safety Consortium Conference and Expo is a premier educational and networking event for food safety solutions. Attracting the most influential minds in food safety, the Consortium enables attendees to engage conversations that are critical for advancing careers and organizations alike. Visit with exhibitors to learn about cutting edge solutions, explore diverse educational tracks for learning valuable industry trends, and network with industry executives to find solutions to improve quality, efficiency and cost effectiveness in an ever-changing, global food safety market. This year’s event takes place October 1–3 in Schaumburg, IL.

magnifying glass

FDA Report on E. Coli Outbreak in Romaine Lettuce Points to “Significant” Finding of Strain in Sediment of Water Reservoir

By Maria Fontanazza
No Comments
magnifying glass

The November 2018 outbreak of E.coli O157:H7 infections linked to romaine lettuce caused 62 illnesses across 16 states. The FDA zeroed in on the Central Coast growing regions of northern and Central California as being responsible for the contamination. The outbreak was declared over on January 9 and yesterday FDA released the report, “Factors Potentially Contributing to the Contamination of Romaine Lettuce Implicated in the Fall 2018 Multi-State Outbreak of E.Coli O157:H7”, which provides an overview of the investigation.

The report states that a sediment sample coming from an on-farm water reservoir in Santa Maria (Santa Barbara County, California) tested positive for the outbreak strain of E. coli O157:H7. Although this particular farm was identified in several legs of the Fall 2018 traceback investigations that occurred in the United States and Canada, as well as being a possible supplier of romaine lettuce in the 2017 traceback investigations, the FDA said that the farm is not the single source of the outbreak, as there is “insufficient evidence”. The traceback suggests that the contaminated lettuce could have come from several farms, because not all tracebacks led to the farm on which the contaminated sediment was found.

“The finding of the outbreak strain in the sediment of the water reservoir is significant, as studies have shown that generic E. coli can survive in sediments much longer than in the overlying water. It’s possible that the outbreak strain may have been present in the on-farm water reservoir for some months or even years before the investigation team collected the positive sample. It is also possible that the outbreak strain may have been repeatedly introduced into the reservoir from an unknown source,” stated FDA Commissioner Scott Gottlieb, M.D. and Deputy Commissioner Frank Yiannas in a press announcement.

(left to right) Stic Harris, FDA; Matt Wise, CDC; Dan Sutton, Pismo Oceano Vegetable Exchange; Scott Horsfall, California Leafy Greens Marketing Agreement discuss the first E.coli outbreak involving romaine lettuce during a panel at the 2018 Food Safety Consortium. Read the article about the discussion.

Although the exact route of contamination cannot be confirmed, the FDA hypothesizes that it could have occurred through the use of agricultural water from an open reservoir, which has increased potential for contamination.

The investigation teams also found evidence of “extensive” wild animal activity and animal burrows near the contaminated reservoir, as well as adjacent land use for animal grazing, all of which could have contributed to the contamination.

Although FDA did not directly name the farm in the report, it provided a link about the recall that was initiated by the farm, Adam Bros. Farming, Inc., in December.

Considering the significant effect that the past two E.coli outbreaks involving romaine lettuce have had on both the public as well as the produce industry, FDA made several recommendations on preventive measures that leafy greens growers and industry can take to avoid such pathogenic contamination, including:

For growers:

  • Assessing growing operations to ensure they are in line with compliance to FSMA and good agricultural practices
  • Making sure that any agricultural water that comes into direct contact with the harvestable portion of the crop, food contact surfaces and harvest equipment is safe and sanitary
  • Address and mitigate risks associated with agricultural water contamination that can occur as a result of intrusion by wild animals
  • Address and mitigate risks associated with the use of land near or adjacent to agricultural water sources that can lead to contamination
  • Conduct root cause analysis whenever a foodborne pathogen is identified in the growing environment, agricultural inputs like water or soil, raw agricultural commodities, or “fresh-cut” ready-to-eat produce

For the broader industry:

  • The development of real-time procedures that enable rapid examination of the potential scope, source and route of contamination
  • All leafy green products should have the ability to be traced back to the source in real time, and information include harvest date. In November, FDA requested voluntary labeling [https://foodsafetytech.com/news_article/cdc-alert-do-not-eat-romaine-lettuce-throw-it-out/] to help consumers identify products affected during an outbreak
  • The adoption of best practices in supply chain traceability

Resources

  1. FDA report: “Factors Potentially Contributing to the Contamination of Romaine Lettuce Implicated in the Fall 2018 Multi-State Outbreak of E.Coli O157:H7”
  2. FDA statement from Commissioner Scott Gottlieb, M.D. and Deputy Commissioner Frank Yiannas
  3.  FDA investigation of source of E.coli O157:H7 outbreak linked to romaine lettuce