Dallas Henderson, RizePoint

Five Food Safety Changes That Are Here to Stay

By Dallas Henderson
No Comments
Dallas Henderson, RizePoint

While the COVID-19 pandemic caused monumental disruption and chaos for the food industry, the silver lining is that it resulted in five positive (and permanent) changes as we move forward in our “new normal.” A common denominator for all these changes is technology, which is driving more informed decisions, additional transparency, training support, auditing improvements and increased collaboration.

1. Technology Is Making us Safer and Smarter

The pandemic led to increased use of and comfort with technology, and tech tools are game changers when it comes to elevating safety and quality. Food businesses are increasingly using digital tools for critical tasks, such as inspections and line checks, and tech solutions make these efforts faster, easier and more accurate than manual processes. Tech solutions can provide comprehensive views of a business—by location or across an enterprise—helping operators identify and resolve issues quickly and completely.

Many operators are relying on tech tools and software to review and analyze real-time data so they can make more informed business decisions. For instance, they can easily access historical sales patterns to help improve a variety of operational decisions, from staffing decisions to re-order quantities.

Digital solutions allow brands to streamline operations, improve safety and quality management, manage (or cut) costs and improve inventory, scheduling and ordering.

2. A More Effective Approach to Audits

Historically, food businesses relied on annual or semi-annual in-person inspections but, as it turns out, these traditional audits were not an ideal approach. Many food business employees dreaded these inspections, viewing independent auditors with trepidation. Employees worried they would be punished for any violations that the auditor found. The auditors looked for infractions but didn’t help teams correct areas of noncompliance or educate them on how to mitigate risks. There was no collaboration or education associated with the inspections, and the audits felt punitive and demoralizing.

During the pandemic, travel restrictions meant that food businesses had to figure out new ways to inspect their facilities. As a result, employees had to collaborate to identify (and fix) issues and improve compliance through more frequent self-inspections. More organizations used a remote auditing approach, which allowed employees to interact with auditors, ask questions, get immediate feedback and learn more about the process.

When employees were involved in the inspections, they became more invested, engaged and empowered. They started to feel responsible for their organizations’ safety and quality successes, rather than feeling accountable for mistakes. Once they better understood what to look for, they could watch for safety and quality infractions during their daily shifts and correct any issues immediately.

This combination approach (traditional, remote and self-audits) provides significant benefits, including greater oversight and data collection, more frequent inspections and more employee engagement. Moving forward, many brands will use all three auditing methods and enjoy many benefits of doing so.

3. Collaborative Cultures Are the New Norm

The rise of collaborative coaching is a very exciting and positive development that has evolved over the past few years. As mentioned above, food businesses are moving towards a continuous quality model with more frequent self-assessments and collaborative coaching in addition to traditional onsite audits. Additionally, many brands are hiring safety and quality coaches, who work with locations to teach their teams more about proper protocols, empowering them to take more responsibility for these efforts.

These coaches don’t just lecture employees about the safety rules, they explain why the rules are so critical, helping teams understand the importance of compliance. They also make employees feel like part of the solution, rather than part of the problem. This effort helps build strong food safety cultures and environments of continuous learning, while also boosting compliance and reducing risk. The result is safer businesses, products and practices.

4. The Rise of Transparency

Guests and employees want transparency about how brands are keeping them safe and healthy. They want to see businesses taking new COVID-19-related protocols seriously, with regular monitoring of CDC recommendations, constant cleaning and sanitizing, regular handwashing, employee temperature checks, etc. During times of COVID spikes, they want to see employees wearing masks and practicing proper social distancing. Gone are the days of employees being expected to work while ill.

In addition to heightened safety transparency, many organizations are increasing data transparency to improve and streamline operations. Brands that use digital tools and software have better, more accurate and holistic views of data. They can use this information to boost efficiency, cut costs, schedule smarter, maintain accurate inventory and make more informed operational decisions, as opposed to relying on gut instinct.

5. Increased Need for Training and Cross-training

Food safety training was essential before the pandemic hit, and now ongoing training has become a top priority. Every employee should be educated about food safety rules, COVID-19 protocols and how to correctly use tech tools to maximize safety and minimize risks. Employers must make training part of each new employee’s onboarding process—especially as our industry experiences record high turnover—but don’t view it as a “one and done” endeavor. Training should be ongoing.

Food providers are using technology to push out reminders and updates directly to employees’ phones so that resources are available right at their fingertips and everyone gets consistent information. Due to COVID-19 and the ongoing worker shortage, we have also learned the importance of cross-training. Employees should be trained to handle multiple roles and responsibilities, so if someone is out sick (or quits), staff members can be deployed wherever they’re needed.

Employers and employees are moving away from viewing training as a chore and instead viewing it as an opportunity to improve knowledge and behaviors. The key to long-term improvement and compliance is ongoing training and a willingness to take immediate corrective actions if/when employees aren’t following protocols to ensure compliance.

There is no denying that the COVID pandemic has been tremendously disruptive to our industry. However, positive changes have emerged from the chaos. The food industry has shown incredible resiliency, flexibility and tenacity throughout this difficult time, and has adopted new protocols, leveraged innovative technologies, increased transparency and embraced collaboration. These changes will likely be permanent, which is good news for the health and safety of our guests, employees and businesses.

In-line micro-hole detection

Technologies for In-line Monitoring of Micro-Holes in Packaging

By Paolo Tondello
No Comments
In-line micro-hole detection

In-line verification for the presence of micro-holes throughout food packaging production is possible by means of an innovative application of IR (Infrared) spectroscopy, or via gas sensors capable of detecting the leakage of target molecules present inside packages.

The areas of application sectors can be modified atmosphere packaging (MAP) packaged products, bakery products preserved with alcohol, food products preserved in nitrogen or air whose release of aromas can be detected.

Today, there are many preservation technologies available on the market for packaged food that lengthen the product’s shelf life while ensuring its organoleptic characteristics and food safety. Replacing air with a gas mixture (MAP) or with nitrogen, or by adding alcohol, are some preservation methods that cover a wide range of products. For all products, it is essential to check:

  • The type of packaging, correctly barrier-coated to prevent the leakage of any preservation substances
  • The gas mixture for MAP packaged products is correct for the type of product
  • The presence of alcohol inside the package for bakery products
  • Via seal test

This last point, checking for the presence of micro-holes in the packaging, is crucial to avoid thwarting all efforts to optimize the packaging’s preservation mixture. Therefore, let’s examine how it is possible to perform a seal test, and the innovations brought about by IR spectroscopy technology that introduce important elements of in-line monitoring of the presence of micro-holes in packaging and the seal’s integrity.

In-line micro-hole detection
Checking for the presence of micro-holes in the packaging, is crucial to avoid thwarting all efforts to optimize the packaging’s preservation mixture. Image courtesy of FT System.

Micro-Holes in Packaging: Consequences of Spot Checks

The presence of a micro-hole in packaging is a particularly critical problem in the food industry, since it can lead to poor food preservation and the loss of its organoleptic characteristics—as well as the possible formation of mold.

Micro-holes may form as a result of defective sealing processes or during the various processing stages of the package, and can lead to negative consequences of the product days later, when the package is already in the shop or on the shelf of a supermarket. Therefore, it is important to make sure the container is intact during the production stage.

The procedures normally in use today to check for micro-holes are spot checks, which detect the loss of pressure or leakage of gas from the package by immersing the product in water, or via an instrument that applies a “dry” vacuum. In the first case, which is called a bubble test, the product is immersed in a container filled with water that is hermetically sealed and to which an external vacuum is applied. This encourages bubbles to come out from any micro-holes, which can, at this point, be checked visually or by means of a camera.

In the second case, a vacuum is created that is carried out by placing the package inside a bell. The molecules leaked from the package (such as CO2 in the case of MAP products) or loss of pressure are indications of the presence of a micro-hole.

The main limitation of these methods is, first and foremost, that of being destructive, since it is no longer possible to reuse the tested package. Over and above this is the fact that they are, of course, merely spot checks—and therefore not comprehensive in their analysis.

Spot-checking does not check the integrity of the entire production, which means that defects are not detected on a regular basis. Moreover, this method is costly in terms of re-processing batches should a micro-hole be detected in the batch being tested.

Modern Applications for Testing In-Line Micro-Holes

The need for in-line identification of micro-holes on 100% of production is pressing, and research for possible solutions has been focused on this need in recent years. Technology is needed that must be:

  • Rapid, in order to be applied to the line’s speed;
  • Reliable in detecting micro-holes;
  • With few false rejects, even at high speed;
  • Characterized by low maintenance costs;
  • Easily manageable for format changes, which are becoming increasingly frequent in production.

This has all been made possible by means of application of IR spectroscopy, or the use of gas sensors for in-line inspection of the presence of holes and micro-holes. These non-destructive technologies make it possible to detect in-line leakages in packaging, package by package, by identifying target escaping molecules.

The air around the package is extracted and taken to an analysis chamber containing an IR beam or gas sensor that can detect the presence of target molecules—and therefore micro-holes. This way, it is possible to automatically inspect every single package, avoiding problems of returns and consumer dissatisfaction caused by poor preservation.

IR Spectroscopy and Gas Sensors

The technologies that enable in-line inspection are based on nondispersive infrared technology, which offer rapid response times and reliable measured values. In the case of very small leakages, measurements with very low concentration differences or measurements by means of containers, the technology is based on the principle of laser spectroscopy.

A monochromatic radiation beam emitted by a laser interacts with the gas molecules being measured. The radiation wavelength coincides with one of the absorption lines of the molecule. Measuring the intensity and absorption profile of the radiation with a photodetector makes it possible to detect the presence of a gas, and determine the concentration of the molecule being measured.

For certain gases, the high sensitivity of measurement can be obtained by using a modulation technique of the absorption measurement known as wavelength modulation spectroscopy (WMS). It involves transmitting sinusoidal modulation to the wavelength variation of the laser radiation, then creating a beat between the signal detected from the photodetector and the modulation frequency.

The distinct advantage of WMS is that it eliminates constant contributions to the absorption, such as that of the container, thereby making it possible to significantly increase the sensitivity of the measurement. The realization of gas sensors for application in the pharmaceutical, bottling and food sectors originated at Italy’s University of Padua, where lasers have been employed to create laboratory prototypes for determining the concentration of gas pressure using absorption spectroscopy techniques.

Industrial application of these technologies has brought IR and laser spectroscopy technology to the market and into production lines, improving the way in which quality control is performed on packaged products. The non-destructive measurement techniques, based on absorption spectroscopy, are today finding new areas of use—not only to monitor package leakages, but also to monitor the internal gases and check their evolution during product shelf life.

Case History: An In-line Control of Micro-holes in the Food Industry

Let’s explore an example of micro-hole inspection via IR spectroscopy and gas sensors, and how certain challenges might be overcome.

For one company, micro-hole inspection technology was initially working by detecting molecules leaking from packages being transferred on conveyor belts. However, during the technology transfer stage, it became evident that the pressure difference between inside and outside of the container was not enough to determine the presence of micro-holes at the line’s speed without touching the package.

To combat this, a system of rollers was implemented to apply the correct pressure to force leakage of target molecules, indicating the presence of micro-holes, without damaging the packaging or the product. The rollers are designed to stress the container and the seals to encourage gas to be released in the event of a leak.

The inspection is applicable on trays as well as bags or flowpacks. Packages are inspected at 360°, both on top and at the bottom (including any longitudinal seals) by inserting air extractors also on the sides and under the package, creating a special opening in the conveyor belts.

The target molecules that can be detected with these technologies are numerous, and vary according to the type of preservation mixture. For example, it is possible to detect CO2 as a target molecule for all MAP-preserved products, or alcohol in the case of bakery products, or specific product aromas for products packaged in air or nitrogen.

Practical applications
Examples of practical applications. Figure courtesy of FT System.

Conclusion

The in-line inspection for micro-holes in packaging through the application of IR spectroscopy, or by means of gas sensors, makes it possible to go from spot checks to in-line inspections on 100% of production. The solution can be applied on trays and bags and does not require the internal gas mixture or the line speed to be changed. It can be easily integrated in existing lines and inspection is reliable, precise and repeatable.

This quality control technology has game-changing potential for products preserved in MAP, alcohol or nitrogen, since it makes it possible to check for micro-holes in the packaging and the integrity of the seal on each individual product. From practical experience in the production line, it is evident that all micro-holes are not detected by spot checks.

In addition, a return or recall, for example for the presence of mold in fresh pasta or in cheese due to a micro-hole, causes significant economic and image damage for the company. Implementing this modern application of IR spectroscopy in the line thereby makes it possible to prevent and intervene in real time on the production process to guarantee the integrity of the package and avoid problems related to safety, quality and preservation.

Food Lab

Four Testing and Detection Trends for 2022

By Wilfredo Dominguez Nunez, Ph.D.
No Comments
Food Lab

COVID-19 continues to pose challenges for every industry, influencing how they will need to adapt to the future. The food manufacturing industry specifically is continuing to see problems with plants shutting down due to outbreaks, labor shortages and domino-effect supply chain issues, forcing them to adjust in order to continue meeting the demands of customers and supplying safe food to the public.

With these adjustments in mind, changes in testing and detection in labs have arisen, influencing four main trends within food manufacturing labs expected throughout 2022.

1. Testing levels continue to increase. In 2021, some customers intentionally planned to cut testing and production in plants to balance out the loss of employees due to the pandemic-induced labor shortages within manufacturing roles.

However, following the trends of rising employment in manufacturing, 2022 should see an increase in testing, raising the baseline of production levels in the plants. According to the Bureau of Labor Statistics, manufacturing jobs saw an increase of more than 113,000 employees in Q4 of 2021. Although still below employment levels of February 2020, the continued increase is positive news for the food manufacturing industry.

2. Food testing labs turn to automation technology. Even as labs begin to see their numbers in employees rise, the demand for automation technology during 2022 will continue to climb given its proven ability to increase productivity in the lab and meet the demands of customers. With automation technology, lab technicians can multi-task thanks to the ability to step away from tests, increasing the amount of testing that can be done despite the lack of people in labs.

Additionally, utilizing ready-to-use products has cut down on the time it takes to prepare for testing. Rather than spending hours preparing Petri dishes and using an autoclave, ready-to-use Petri films or Petri dishes create easy to follow protocols with significantly less steps for a lab technician to complete.

3. Third-party labs gain popularity. With food manufacturing, tests will either be conducted on-site or at a third-party lab. Taking labor shortages into account, many manufacturers still do not have the staff numbers to maintain a dedicated on-site testing facility. As a result, manufacturers will turn to third-party labs to help increase testing volumes and productivity.

Not only have third-party labs aided manufacturers with testing, but the labs also often have the capabilities to run confirmation tests on products, tests that may not have been possible if conducted on-site. And as third-party labs have seen numerous consolidations in recent years, their capability to move products around for necessary testing is much more simplified and achievable than if testing was conducted on-site.

4. Shifting to locally sourced products. With supply chain issues continuing into 2022, the food manufacturing industry could source more products from local farmers and other local product suppliers in order to better keep up with demand.

Right now, it is much harder to receive and send products across the globe with countries and states enforcing COVID-19 restrictions and dealing with their own labor issues. Not only are labs looking to rely on locally sourced products to assist in getting products to their final destination, but consumers are also increasing their demand for locally sourced products. Specifically, consumers are looking for the reliability of food on the shelves, shorter time spent between farmer and grocery stores, as well as simply fewer people touching product throughout the chain.

Challenges in food testing labs that arose in the past couple of years are still prevalent in 2022, but from adversity comes innovation and change. With more attention on automation technology, more food manufacturing employees returning to work, and adjustments to ongoing supply chain issues, 2022 is looking more hopeful in working to return to the level of productivity food manufacturers were meeting prior to the pandemic.

Hazy IPA

Clearing the Beer Haze with Advanced Turbidity Testing Technologies

By Steve Guay
No Comments
Hazy IPA

Beer is one of the world’s oldest beverages, with evidence suggesting production as far back as the Bronze age. While beer is no longer used as renumeration for work as it was in the Mesopotamian Fertile Crescent, it is nevertheless a common pleasure for many people. Craft brewing is a relatively new phenomenon, and quite different from the brewing processes of antiquity. In the United States, immigrants from Germany and Czechia began to experiment with new recipes for craft beer in the 1960s. These recipes, often based on the Bavarian 16th century Reinheitsgebot, or purity laws, ensured that only the purest, highest quality ingredients went in to make beer: Water, barley, hops and yeast.

Since then, there has been a rapid growth in the number of microbreweries that experiment with “new-world” hops and grains to create huge ranges of flavorful beers that go far beyond traditional recipes. This variety in brewing ingredients and approaches has, in part, supported the explosion of a mass market for craft beer. In 2020, the global market value of craft beer was estimated at nearly $165 billion, and is expected to grow to nearly $554 Billion by 2027, with the largest growing markets in countries like China, Japan and the United States. There has also been a shift in which types of beers are consumed, with more premium or specialized craft beers increasing in market share with respect to low-cost mass-production beers.

In such a crowded and dynamic market, beer producers are faced with competitive challenges like never before. Ensuring a consistently high-quality product with a distinctive flavor profile that can be enjoyed time and time again is critical for market success. One of the key challenges standing in the way of achieving this is turbidity, or “haze”, in the end product. Such haze can give an unsightly first impression to consumers, compromise flavor, and negatively impacts shelf stability. In this article we discuss how new, advanced turbidity testing technologies are enabling brewers to quickly and efficiently eliminate haze from their beers, supporting breweries in their goals of delivering great consumer experiences again and again.

Quality over Quantity

With the growing “premiumization” of beers, ever-greater attention and importance is being placed on interesting and consistent flavor profiles. Often, this includes beers made from ingredients far outside the relatively strict Reinheitsgebot recipe, including additions such as coffee, fruit and spices. The emphasis on more complex flavor profiles is pushing beer tasting to be taken as seriously as wine tasting, with perfectly balanced beers often being designed to match certain foods.

However, the addition of these newer ingredients can introduce challenges into the brewing process, especially as they can be sources of turbidity-causing impurities that may affect the quality, flavor and shelf stability of the final product. This is particularly challenging when beer brewing is scaled up to larger manufacturing quotas, where careful control of variables like ingredient choices, recipes and manufacturing methods are critical for ensuring the consistency and quality of the beer from batch to batch.

To meet these needs, modern breweries are increasingly using new and advanced technologies throughout the brewing process to maintain high quality products. Technologies like water purification systems, titrators and portable instruments such as hand-held pH meters and spectrophotometers are all being utilized to improve and refine the manufacturing process. A major focus of this technological drive is in turbidity detection and removal.

What Is Haze, and Where Does It Come From?

Haze is a broad term referring to evenly distributed turbidity—suspended, insoluble material which can appear in the final product. Haze can be divided into several types, most commonly: Chill haze, a temporary haze that disappears when a chilled beer warms to room temperature; and permanent haze, which is present at all temperatures. Haze can also be divided into biological haze (caused by microbiological growth in the beer) and non-biological haze (caused by a wide variety of non-living material, such as peptides, polyphenols and starches).

Hazy IPA
With the rising popularity of craft beer, many companies and customers are embracing intentionally ‘cloudy’ beers, which can make detecting offending turbidity even more challenging. All images courtesy of Thermo Fisher Scientific.

Since turbidity can be the result of unwanted microbes, wild yeast or protein particles, these deposits, although not unsafe to consume, can significantly alter the flavor profile of the beer, adding unpleasant acidity, sourness, or even “off” flavors. Bacteria are one of the major sources of turbidity in beers, particularly lactic acid-producing bacteria (LAB), such as Lactobacillus. While small amounts of lactic acid can add pleasant, desirable sour flavors in sour beers, the over-presence of these bacteria can be a major cause of contamination, so their levels must be closely monitored in the brewing process. Other bacteria like Pectinatus species can also “infect” beers, causing turbidity as well as “off” aromas and flavors due to the creation of hydrogen sulfide and fatty acids.

Importantly, turbidity-causing compounds can collect in the product from all stages of the brewing process:

  1. This starts with the source of water, and how it is filtered and treated. For example, a high presence of calcium in brewing water can cause precipitation of calcium oxalate.
  2. Mashing, the first stage of the brewing process, produces a malt extract from mixing grains and water. The malt extract is a liquid containing sugar extracted during mashes and has high viscosity and high protein content. At this stage fungi (like Penecillium), wild yeasts (Candida) and bacteria can all enter the mix to cause turbidity later on.
  3. From there, the process of lautering separates the wort from the grain. The wort is then boiled with hops, clarified, then fermented with yeast. The fermentation process is a common step when turbidity-causing bacteria like Lactobacillus and Pediococcus can contaminate the mixture.
  4. The fermented beer product is then stored for anything from three weeks to three months in a storage tank where a second fermentation takes place. Then it is filtered and packaged into barrels, bottles, or cans; all of which are also potential sources of turbidity-causing bacteria like Pectinatus.

The filtration and pasteurization processes are key for removing sources of turbidity. However, these processes do not necessarily remove all sources of turbidity, especially if aspects of the brewing process are altered by external factors (e.g., subtle shifts in the mashing temperatures) and cause a buildup of contaminants that is too great to filter out. Therefore, effectively monitoring and minimizing turbidity throughout the brewing process is critical, allowing brewers to make timely corrective adjustments, reducing a buildup of contaminants in the final product.

Advanced Methods for Turbidity Testing

To support effective haze removal and ensure beer consistency, turbidity measurements must be taken throughout the entire brewing process. Measurements should therefore be quick and efficient, and able to measure large quantities of beer in a short space of time, especially in high-production breweries. As such, advanced on-site turbidity testing technologies that are efficient and easy to use are ideal, and can rapidly streamline quality control in the brewing process. For example, with turbidity meters, breweries can swiftly check that their fining or filtration process is yielding a desired end product, and if an issue arises during the clarification process, an onsite turbidity measurement can pick this up right away for speedy corrective action. Such speedy rectification minimizes the chances of ruined batches and resultant profit loss to the brewery.

Handheld Turbidity Meter
Advanced portable turbidity meters enable efficient and reliable measurements on-site to streamline quality control in the brewery.

Modern turbidity meters work by using an infrared LED light source to measure light scattering in a solution. These handy devices allow brewers to perform rapid testing of beer with simple grab samples, meaning samples can be analyzed without having to disturb the brewing process. The LED light sources used in more advanced meters also have several benefits. For example, the LED does not require a warm-up period like older tungsten lamps, meaning it is ready to use at all times. Secondly, infrared LED light sources prevent color interference, which is especially useful for testing darker beers. Finally, the LED will last the life of the meter and give stable signals, meaning that calibration does not drift. Turbidity meters can also test for chill haze, allowing brewers to check for problems that can cause the beer to turn cloudy during prolonged chilling.

Quality Kings

Quality control of the brewing process is crucial for maintaining the quality and consistency of beer products that keep customers returning time and time again to their beers of choice. In a hyper-competitive market, brewers must use all the advantages they can to stay ahead of the game. Hazy beers can be particularly off-putting to customers if they are expecting bright, clear products, and critical qualities like taste and aroma can be very unpleasant if contamination isn’t carefully controlled. Moreover, unwanted turbidity in beers can negatively impact shelf stability, with resultant impact on profitability and brand reputation.

Owing to the complexity of beer making, the sources of turbidity are multiple, meaning that careful testing of turbidity is critical. In helping to overcome these challenges, advanced turbidity meters are enabling brewers to perform efficient and simple measurements on-site throughout the brewing process. This is helping to drive more timely tweaks to the brewing, filtration and storage steps to ensure consistent, high-quality beers with carefully crafted flavor profiles reach the market.

Plant based milk

How Advancements in Analytical Testing Are Supporting the Development of Novel Plant-Based Dairy Alternatives

By David Honigs, Ph.D.
No Comments
Plant based milk

Globally, milk and dairy products rank among the top eight allergens that affect consumers across the world. In America in particular, 32 million people suffer from some form of allergy, of which a staggering 4.7 million are allergic to milk. Additionally, it is estimated that around 70% of adults worldwide have expressed some form of lactose intolerance. As such, it is important for key stakeholders in the dairy industry to create novel products that meet the wants and needs of consumers.

Low-lactose products have been available since the 1980s. But in recent years, the demand for plant-based alternatives to dairy products has been on the rise. Some of this demand has come from individuals who cannot digest lactose or those that have an allergy to dairy. However, as all consumers continue to scrutinize their food labels and assess the environmental and ethical impact of their dietary choices, plant-based milk has become an appealing alternative to traditional dairy products.

To adapt to this changing landscape, traditional dairy processors have started to create these alternatives alongside their regular product lines. As such, they need access to instruments that are flexible enough to help them overcome the challenges of testing novel plant-based milk, while maintaining effective analysis and testing of conventional product lines.

 David Honigs, Ph.D. will share his expertise during the complimentary webinar, “Supporting the Plant-Based Boom: Applying Intuitive Analytical Methods to Enhance Plant-based Dairy Product Development” | Friday, December 17 at 12 pm ETLow in Lactose, High in Quality

Some consumers—although not allergic to dairy—lack the lactase enzyme that is responsible for breaking down the disaccharide, lactose, into the more easily digestible glucose and galactose.

Low-lactose products first started to emerge in 1985 when the USDA developed technology that allowed milk processors to produce lactose-free milk, ice cream and yogurt. This meant consumers that previously had to avoid dairy products could still reap their nutritional benefits without any adverse side effects.

Similar to conventional dairy products, routine in-process analysis in lactose-free dairy production is often carried out using infrared spectroscopy, due to its rapid reporting. Additionally, the wavelengths that are used to identify dairy components are well documented, allowing for easier determination of fats, proteins and sugars.

Fourier transform infrared (FTIR) technologies are the most popular of the infrared spectroscopy instruments used in dairy analysis. As cream is still very liquid, even at high solid levels, FTIR can still effectively be used for the determination and analysis of its components. For products with a higher percentage of solids—usually above 20%—near-infrared (NIR) spectroscopy can provide much better results. Due to its ability to penetrate pathlengths up to 20 mm, this method is more suitable for the analysis of cheeses and yogurts. For low-lactose products in particular, FTIR technology is integral to production, as it can also be used to monitor the breakdown of lactose.

Finger on the Pulse

For some consumers, dairy products must be avoided altogether. Contrary to intolerances that only affect the digestive system, allergies affect the immune system of the body. This means that allergenic ingredients, such as milk or dairy, are treated as foreign invaders and can result in severe adverse reactions, such as anaphylactic shock, when ingested.

From 2012 to 2017, U.S. sales of plant-based milk steadily rose by 61%. With this increasing demand and the need to provide alternatives for those with allergies, it has never been a more important time to get plant-based milk processing right the first time. Although the quantification of fat, protein and sugar content is still important in these products, they pose different challenges to processors.

In order to mimic traditional dairy products, plant-based milk is often formulated with additional ingredients or as a blend of two plant milks. Sunflower or safflower oil can be added to increase viscosity and cane syrup or salt may be added to enhance flavor. All of these can affect the stability of the milk, so stabilizers or acidity regulators may also be present. Additionally, no plant milk is the same. Coconut milk is very high in fat content but very low in protein and sugar; on the other hand, oat milk is naturally very high in carbohydrates. This not only makes them suitable for different uses, but also means they require different analytical procedures to quantify their components.

Although many FTIR and NIR instruments can be applied to plant-based milk in the same way as dairy milk, the constantly evolving formulation differences pose issues to processors. For example, the way that protein is determined in dairy milk will vary from the way protein is determined in almond milk. Both will follow a method of quantifying the nitrogen content but must be multiplied by a different factor. To help overcome these challenges, many companies have started to develop plant-based milk calibrations that can be used in conjunction with existing infrared instruments. Currently, universal calibrations exist to determine the protein, fat, solids, and sugar content of novel products. With more research and data, it’s likely in the future these will be expanded to generate calibrations that are specific to soy, almond and oat milk.

Even with exciting advancements in analytical testing for plant-based milk, the downtime for analysis is still a lot higher than traditional dairy. This is due to the increased solid content of plant-based milk. Many are often a suspension of solid particles in an aqueous solution, as opposed to dairy milk, which is a suspension of fat globules in aqueous solution. This means processors need to factor in additional centrifuge and cleaning steps to ensure results are as accurate and repeatable as possible.

In addition to the FTIR and NIR instruments used for traditional dairy testing, plant-based milk can also benefit from the implementation of diode array (DA) NIR instruments into existing workflows. With the ability to be placed at- and on-line, DA instruments can provide continual reporting for the constituent elements of plant-based milk as they move through the processing facility. These instruments can also produce results in about six seconds, compared to the 30 seconds of regular IR instruments, so are of great importance for rapid reporting of multiple tests across a day.

Keeping It Simple

Although the consumption of dairy-free products is on the rise, lots of plant-based milk are also made from other allergenic foods, such as soy, almonds and peanuts. Therefore, having low-lactose alternatives on the market is still valuable to provide consumers with a range of suitable options.

To do this, dairy processors and new plant-based milk processors need access to instruments that rapidly and efficiently produce accurate compositional analysis. For dairy processors who have recently started creating low-lactose or dairy-free milk alternatives, it is important that their instrumentation is flexible and used for the analysis of all their product outputs.

Looking towards the future, it’s likely both dairy products and their plant-based counterparts will have a place in consumers’ diets. Although there is some divide on which of these products is better—both for the environment and in terms of health—one thing that will become increasingly more important is the attitude towards the labeling of these products. Clean labels and transparency on where products are coming from, and the relative fat, protein and sugar content of foods, are important to many consumers. Yet another reason why effective testing and analytical solutions need to be available to food processors.

Salmonella Surveillance

Mid-Year Pathogen Surveillance and Inspection Update

By Nathan Libbey
No Comments
Salmonella Surveillance

Food Recalls

The first half of 2021 saw almost a 20% increase in recalls vs. the last 6 months of 2020 (117 vs. 96). According to a recent report by Lathrop GPM, LLC, food producers have seen an increase in food safety incidents since the pandemic began, and expect an ongoing increase over the next year.1 A majority of recalls were due to undeclared allergens or potential for allergen cross contamination. Second to allergens were potential for microbiological contaminants, including Salmonella, Listeria, E. coli, and Cyclospora.

FDA Recalls Recalls
Figure 1 and 2. The first half of 2021 saw a 26% increase of facility inspections by the FDA. Despite this jump, inspections in the first half of 2020 were 80% higher than this year’s first six months. Source: FDA Recalls, Market Withdrawals, & Safety Alerts.

Inspection Results

The first half of 2021 saw a 26% increase of facility inspections by the FDA. Despite this jump, inspections in the first half of 2020 were 80% higher than this year’s first six months. Inspections generally lead to three outcomes; No Action Indicated (continue as you were,) Voluntary Action Indicated (voluntary to make some changes), or Official Action Indicated (OAI) (Regulatory Actions will be recommended by the FDA). A majority of inspections (56%) resulted in NAI this year, compared to 59% and 50% in the first and second halves of 2020, respectively.

Facility Inspections
Figure 3. Facility Inspections. Data from FDA.

Salmonella Surveillance

The FSIS provides ongoing surveillance of Salmonella and Campylobacter presence in poultry, both domestic and imported. Salmonella is reported by facility and each is given a category rating of 1–3. One is exceeding the standard (based on a 52-week moving average), two is meeting the standard, and three is below standard. For the 52-week reporting period ending May 30, 2021, 60% achieved category one, compared to 56% the previous 52 weeks.

Salmonella Surveillance Salmonella Surveillance
Figures 4 & 5. Salmonella surveillance data from FDA.

Listeria and Salmonella Surveillance in RTE Meat and Poultry

USDA FSIS conducts periodic sampling of Ready to Eat (RTE) meat and poultry products and reports quarterly results. Sampling is conducted both in a random fashion as well as based on risk-based sampling. In Q2 2021, 4769 samples were tested for Listeria, compared to 4632 in Q1.

Percent positive rates were .36% for Q2 and .43% for Q1. Neither quarter reported any positives for Listeria in imported RTE Meat and Poultry Products.

Salmonella samples for RTE totaled 3676 in Q2 2021, compared with 3566 in Q1. In both quarters, only 1 positive was found in the samples collected.

Routine Beef Sampling for E. coli 0157:H7 and STEC

The FSIS also conducts ongoing routine sampling of beef products for E. coli. E. coli is further classified into 0157:H7 and non-0157:H7 Shiga toxin-producing E. coli (STEC). In Q2 of 2021, 4467 samples were collected and tested for 0157:H7 versus 4268 in Q1. Of these, three were positive, compared to seven positives the preceding quarter. For STEC, a total of 8 positives were found, compared to 1 positive in Q1. No positives were found in imported goods in Q2, although in Q1 2021, 4 positives for STEC were found.

Conclusion

The first half of 2021 showed an increase in activity, which is on par with food industry survey data. Food recalls have increased, with food allergens remaining the most prevalent reason for recall or withdrawal. While inspections also increased, they have not returned to pre-pandemic levels. The impact of the spread of the Delta variant and increased restrictions is yet to be seen, but inspection activity will likely not rebound entirely by the end of the year. Pathogen tests by FSIS increased quarter over quarter for Salmonella, E. coli, and STEC, with mixed results in prevalence.

Reference

1. Lathrop GPM, LLC. (2021). Food Processing Trends, Outlook and Guidance Report. Retrieved from https://www.lathropgpm.com/report-agribusiness.html

Allergens

Key Trends Reinforce Food Allergen Testing Market Across North America

By Saloni Walimbe
No Comments
Allergens

The food allergen testing industry has garnered considerable traction across North America, especially due to the high volume of processed food and beverages consumed daily. Allergens are becoming a significant cause for concern in the present food processing industry worldwide. Food allergies, which refer to abnormal reactions or hypersensitivity produced by the body’s immune system, are considered a major food safety challenge in recent years and are placing an immense burden on both personal and public health.

In 2019, the most common reason behind recalls issued by the USDA FSIS and the FDA was undeclared allergens. In light of this growing pressure, food producers are taking various steps to ensure complete transparency regarding the presence of allergenic ingredients, as well as to mitigate risk from, or possibly even prevent contact with, unintended allergens. One of these steps is food allergen testing.

Allergen detection tests are a key aspect of allergen management systems in food processing plants and are executed at nearly every step of the process. These tests can be carried out on work surfaces, as well as the products, to detect any cross contamination or allergen presence, and to test the effectiveness of a food processing unit’s cleaning measures.
There has been a surge in awareness among consumers about food allergies and tackling the risk of illnesses that may arise from consuming any ingredient. One of the key reasons for a higher awareness is efforts to educate the public. In Canada, for example, May has been designated “Food Allergy Awareness Month”. It is estimated that more than 3 million people in Canada are affected by food allergies.

The size of the global food allergen testing market is anticipated to gain significant momentum over the coming years, with consistent expansion of the dairy, processed food and confectionary segments.

Understanding the Prevailing Trends in Food Allergen Testing Industry

Food allergies risen nearly 50% in the last 10 years, with a staggering 700% increase observed in hospitalizations due to anaphylaxis. Studies also suggest that food allergies are a growing health concern, with more than 250 million people worldwide estimated to be affected.

Although more than 170 foods have been identified as causing food allergies in sensitive consumers, the USDA and the FDA have identified eight major allergenic foods, based on the 2004 FALCPA (the Food Allergen Labeling and Consumer Protection Act). These include eggs, milk, shellfish, fish, peanuts, tree nuts, soybean, and wheat, which are responsible for 90% of allergic reactions caused due to food consumption. In April 2021, the FASTER (Food Allergy Safety, Treatment, Education, and Research) Act was signed into law, which categorized sesame as the ninth major food allergen.

This ever-increasing prevalence of allergy-inducing foods has presented lucrative opportunities for the food allergen testing industry in recent years since food processing business operators are placing a strong emphasis on ensuring transparency in their products’ ingredient lists. By testing for allergens in food products, organizations can accurately mention each ingredient, and thereby allow people with specific food allergies to avoid consuming them.

Several allergen detection methods are used in the food processing industry, including mass spectrometry, DNA-based polymerase chain reaction (PCR) as well as ELISA (enzyme-linked immunosorbent assay), to name a few. The FDA, for instance, created a food allergen detection assay, called xMAP, designed to simultaneously identify 16 allergens, including sesame, within a single analysis, along with the ability to expand for the targeting of additional food allergens. Such industry advancements are improving the monitoring process for undeclared allergen presence in the food supply chain and enabling timely intervention upon detection.

Furthermore, initiatives, such as the Voluntary Incidental Trace Allergen Labelling (VITAL), created and managed by the Allergen Bureau, are also shedding light on the importance of allergen testing in food production. The VITAL program is designed to support allergen management with the help of a scientific process for risk assessment, in order to comply with food safety systems like the HACCP (Hazard Analysis and Critical Control Point), with allergen analysis playing a key role in its application.

ELISA Gains Prominence as Ideal Tool for Food Allergen Testing

In life sciences, the detection and quantification of various antibodies or antigens in a cost-effective and timely manner is of utmost importance. Detection of select protein expression on a cell surface, identification of immune responses in individuals, or execution of quality control testing—all these assessments require a dedicated tool.

ELISA is one such tool proving to be instrumental for both diagnostics as well as research). Described as an immunological assay, ELISA is used commonly for the measurement of antibodies or antigens in biological samples, including glycoproteins or proteins.

While its utility continues to grow, ELISA-based testing has historically demonstrated excellent sensitivity in food allergen testing applications, in some cases down to ppm (parts per million). It has a distinct advantage over other allergen detection methods like PCR, owing to the ability to adapt to certain foods like milk and oils, where its counterparts tend to struggle. The FDA is one of the major promoters of ELISA for allergen testing in food production, involving the testing of food samples using two different ELISA kits, prior to confirming results.

Many major entities are also taking heed of the growing interest in the use of ELISA for food allergen diagnostics. A notable example of this is laboratory analyses test kits and systems supplier, Eurofins, which introduced its SENSISpec Soy Total protein ELISA kit in September 2020. The enzyme immunoassay, designed for quantitative identification of soy protein in swab and food samples, has been developed by Eurofins Immunolab to measure residues of processed protein in various food products, including instant meals, chocolate, baby food, ice cream, cereals, sausage, and cookies, among others.

In essence, food allergens continue to prevail as high-risk factors for the food production industry. Unlike other pathogens like bacteria, allergenic proteins are heat resistant and stable, and cannot easily be removed once present in the food supply chain. In this situation, diagnostic allergen testing, complete segregation of allergenic substances, and accurate food allergen labeling are emerging as the ideal courses of action for allergen management in the modern food production ecosystem, with advanced technologies like molecular-based food allergy diagnostics expected to take up a prominent role over the years ahead.

Food Safety Testing Market

Processed Meat and Poultry Applications Drive Food Safety Testing Industry

By Hrishikesh Kadam
No Comments
Food Safety Testing Market

The food safety testing industry is constantly experiencing new developments, technological advances and regulatory pressures as the burden of foodborne illness remains a prevalent concern. Growing consumer preference for convenience and processed foods is a pivotal trend augmenting the industry outlook.

The World Health Organization (WHO) reports that every year nearly $110 billion is lost across middle- and low-income countries due to unsafe food. From the health risk perspective, pathogens, pesticides or toxins cause more than 200 diseases, ranging from diarrhea to cancers. Since most foodborne illnesses are preventable, WHO and other public health organizations worldwide are taking necessary action to establish strong and resilient food safety systems and enhance consumer awareness.

Food products may become contaminated at any stage of production, supply or distribution. Testing food and beverage products for safety is a critical component of the food and beverages sector. In terms of annual valuation, the global food safety testing market size is anticipated to hit $29.5 billion by 2027.

Food Safety Testing Market
Food Safety Testing Market. Figure courtesy of Global Market Insights, Inc.

Pathogen Testing Demand Rises as E. coli, Salmonella Infections Persist

Pathogen testing is of utmost importance to the food & beverage industry, as there remains a large number of virus and bacteria causing pathogens and microbial agents responsible for foodborne illnesses. Numerous instances of pathogen contamination have come to light recently, augmenting the need for food pathogen testing, especially during a time when COVID-19 poses a significant threat.

For instance, in July, the CDC and the FDA announced that they are working with other public health agencies to investigate an outbreak of E. coli O121 infections across 11 states. Meanwhile in the European Union, several countries have started investigating Salmonella illnesses linked to imported tahini and halva. Since 2019, about 80 people are estimated to be affected in Germany, Denmark, Norway, Sweden and the Netherlands.

Pathogen testing demand will likely increase across North America and Europe with further spread of infections. These regions are among the major consumers of processed meat, seafood and poultry products, augmenting the need for reliable food safety testing solutions.

Meat, Poultry and Seafood Consumption Drive Foodborne Infection Risks

Globally more individuals are consuming processed poultry and meat products at home, in restaurants, fast food restaurants, and other locations. The worldwide meat consumption is estimated to reach 460 to 570 million tons by the year 2050, as per data from The World Counts.

It is essential to ensure optimum product quality during meat processing to minimize the perils of foodborne microorganisms. Meat quality testing standards are continuously evolving to ensure that food manufacturers bring the best-quality products to the market. In July this year Tyson Foods recalled more than 8.9 million pounds of ready-to-eat chicken products due to potential Listeria monocytogenes contamination. The significant recall quantity itself represents the scope of pathogen testing requirements in processed meat sector.

E. coli O157 is considered to increase the risk of toxins that lead to intestinal problems and can cause significant illness among geriatric people, pregnant women and other high-risk populations. Earlier this year, PerkinElmer introduced an E. coli O157 pathogen detection assay to be used for testing raw ground beef and beef trim. The solution is greatly suited for food and beverage sector customers that need to test high volumes of food samples regularly. The development indicates an incessant fight to offer effective food safety testing products to tackle the threat of pathogen-related illnesses.

USDA’s FSIS also recently revised guidelines for controlling Salmonella and Campylobacter infections in raw poultry. The updated guidelines provide poultry establishments with best practices that they may follow to reduce the risk of such infections in raw products.

Food Safety Testing Trends amid COVID-19 Pandemic

Food safety testing demand has experienced a notable uptick since the outbreak of the coronavirus pandemic, as food security and sustainability have been recognized as key areas of focus.

Globally, a rise in online orders of groceries and restaurant meals has been observed. Major food regulators such as the FDA have released food safety protocols and guidelines for food companies, hotels and restaurants. These practices help ensure optimum food quality as well as the safety of employees, staff and consumers.

The FDA has been working with the USDA and FSIS as well as state authorities to investigate foodborne illnesses and outbreaks amid the pandemic. Many regions are also updating food safety policies to help overcome the challenges of the pandemic. While pathogen and toxin testing demand are growing in most regions, the inadequacy of food control infrastructure may limit food safety testing industry expansion in emerging economies.

Drawbacks of existing technologies and the need to reduce sample utilization, lead time and testing cost are driving new innovations in food safety testing. Ongoing developments are focused on providing accurate results in limited timespan.
The food safety testing market landscape will continue to evolve as new regulations are introduced, public awareness rises, and food consumption patterns change. The rapid testing technology segment, which includes PCR, immunoassay and convenience testing, is estimated to hold a major share of the overall industry owing to faster results provided, which benefits the organizations in terms of productivity and processing costs. In addition to previously discussed PerkinElmer, Eurofins Central Analytical Laboratories Inc, Bio-Rad Laboratories, Intertek Group PLC, Bureau Veritas SA, and SGS AG are some of the other notable names in the industry.

Dollar

Developments in PCR Technology Boost Food Pathogen Testing Market Outlook

By Vinisha Joshi
No Comments
Dollar

In recent years, foodborne illness has ignited alarming concerns across the globe. Food products can become contaminated with pathogenic bacteria through exposure to inadequate processing controls, animal manure, improper storage or cooking, and cross contamination. The following is a look at some of the pivotal figures that illustrate the effects of food contamination:

  • • According to WHO, an estimated of 600 million people globally fall ill after consuming contaminated food, of which 420,000 succumb to death every year.
  • Children under 5 years of age carry 40% of the foodborne disease burden, with 125,000 fatalities recorded annually.
  • Regionally, CDC reports suggest that foodborne pathogens cause nearly 9.6 million illnesses, 57,500 hospital admissions, and 1,500 deaths yearly in the United States alone.
  • Considering the financial aspects, it is essential to note that about $110 billion is lost almost every year in productivity and medical expenses from unsafe food consumption in low-and middle-income economies.

With such daunting numbers taking over the globe, there stands an innate requirement of cost-effective, easy-to-use, and accurate testing methods that ensure the consumer is delivered nothing but the safest food.

It has been estimated that global food pathogen testing market size could potentially surge to $5.5 billion by 2024.

Why is pathogen testing necessary? Pathogen testing is generally carried out to decrease and remove foodborne illnesses. It is a technique implemented in the very nascent stage of food production to ensure proper sanitation and food safety. The testing can be done using conventional technologies or the cutting-edge methods, including Polymerase Chain Reaction (PCR) or an immunoassay test.

PCR technology: An ideal and convenient technology in use for pathogen detection in food industry

PCR is one of the most frequently used technologies. The test enables the detection of a single bacterial pathogen, including E. Coli, Salmonella and Listeria, present in food by detecting a specific target DNA sequence. Aiding to such advantages, various business conglomerates that are involved in the food pathogen testing industry are taking strategic measures to bring forth novel innovations and practices in the space. The following is a brief snapshot of some developments in the PCR based pathogen testing technology landscape:

  • Sanigen, Ilumina partnership for development of NGS panel
    Owing to the escalating demand for PCR testing technology for detecting the presence of food pathogens, South Korea-based Sanigen, recently announced standing as a channel partner in the region for Illumina. Both the companies, in unison, are expected to work towards the development of NGS panels that can robustly detect 16 types of foodborne pathogen from around 400 samples.
  • Thermo Scientific’s 2020 launch of SureTest PCR Assays
    Last year Thermo Scientific expanded its portfolio of foodborne pathogen detection with the launch of the SureTest PCR Assays. The testing technology is poised to offer various food producers an access to a more holistic range of tests for every step of the analysis process.

A look at one sector: How is the expanding dairy sector complementing the growth structure of food pathogen testing market?

The dairy production industry is rapidly expanding in various developing and developed economies, marking a significant contribution to health, environment, nutrition and livelihoods. According to a National Farmers Union report, the U.S. dairy industry accounts for 1% of the GDP, generating an economic impact of $628 billion, as of 2019. However, dairy products, although deemed healthy, can contribute to severe human diseases in umpteen ways, with dairy-borne diseases likely to top the list.

Milk and products extracted from the milk of dairy cows can house a variety of microorganisms, emerging as a source of foodborne pathogens. This has pushed the need for appropriate testing methods and technologies, which can eliminate the presence of dairy-borne bacteria, like Salmonella.

Today, various rapid pathogen testing solutions that are suitable for detecting the presence of distinct bacteria and organisms are available for dairy-based food companies. For instance, PCR-based solutions are available to test for mastitis in dairy, which is a common rudder infection caused by microorganisms in dairy cattle, affecting the quality of milk. Apparently, Thermo Fisher offers VetMAX MastiType qPCR kits for relatively faster, efficient and easier mastitis diagnostics. In fact, the kits are deemed to be reliable tools that would accurately detect all mastitis causing bacteria in frozen, fresh and preserved milk samples.

Meat Products

Consumption of raw or undercooked meat is also expected to generate a significant food pathogen testing kits demand in the coming years. Common contaminants found in these products are E. coli and Salmonella. One of the strains of E. coli, Shiga Toxin-producing E. coli (STEC), is expected to emerge as a fatal contaminant present in the meat products. Consider the following:

  • WHO reports estimate that up to 10% of patients with STEC infection are vulnerable to developing haemolytic uraemic syndrome (HUS), with a case-mortality rate ranging from 3 to 5%.
  • Moreover, it has the ability to cause neurological complication in 25% of HUS patients and chronic renal sequelae, in around 50% of survivors.

Under such circumstances, the demand for pathogen testing in meat products, for detecting E. coli and other contaminants is gradually expanding worldwide. In January this year, PerkinElmer introduced its new tool for detection of E. coli O157 in food products. The kit has been developed for generating rapid results while simultaneously putting them forth to support food safety efforts related to beef and its self-life.

The global food and beverage sector is subject to stringent safety requirements and a considerable part of the responsibility lies with food producers. As such, access to rapid testing technologies will enable the producers to fulfill their safety obligations without compromising on productivity and bottom lines. The consistent development of PCR-based tools will certainly outline the gradual progress of food pathogen testing industry, keeping in mind the high penetration of dairy and processed meat products worldwide.

magnifying glass

Surveying the Phthalate Litigation Risk to Food Companies

By Kara McCall, Stephanie Stern
1 Comment
magnifying glass

Boxed macaroni and cheese—comforting, easy, and, according to a 2017 article by The New York Times, containing “high concentrations” of “[p]otentially harmful chemicals.” Roni Caryn Rabin, The Chemicals in Your Mac and Cheese, N.Y. TIMES, June 12, 2017. Those “chemicals” referenced by the Times are phthalates—versatile organic compounds that have been the focus of increased media, advocacy, and regulatory scrutiny. But what are phthalates and what is the litigation risk to food companies who make products that contain trace amounts of this material?

Background

Phthalates are a class of organic compounds that are commonly used to soften and add flexibility to plastic.1 Ninety percent of phthalate production is used to plasticize polyvinyl chloride (PVC).2 Di-(2-ethylhexl) phthalate (DEHP) is the most commonly used phthalate plasticizer for PVC.3 Due to the prevalence of plastics in the modern world, phthalates are everywhere—from food packaging to shower curtains to gel capsules. Consequently, almost everyone is exposed to phthalates almost all of the time and most people have some level of phthalates in their system.4

Recently, various epidemiological studies have purported to associate phthalates with a range of different injuries, from postpartum depression to obesity to cancer. However, as the Agency for Toxic Substances and Disease Registry (ATSDR) stated in its 2019 toxicology profile for DEHP, these epidemiology studies are flawed because, inter alia, they often rely on spot urine samples to assess exposure, which does not provide long-term exposure estimates or consider routes of exposure.5 To date, claims regarding the effects of low-level phthalate exposure on humans are not supported by human toxicology studies. Instead, phthalate toxicology has only been studied in animals, and some phthalates tested in these animal studies have demonstrated no appreciable toxicity. Two types of phthalates—DBP and DEHP—are purported to be endocrine disrupting (i.e., affecting developmental and reproductive outcomes) in laboratory animals, but only when the phthalates are administered at doses much higher than those experienced by humans.6 Indeed, there is no causal evidence linking any injuries to the low-level phthalate exposure that humans generally experience. Nonetheless, advocacy and government groups have extrapolated from these animal studies to conclude that DEHP may possibly adversely affect human reproduction or development if exposures are sufficiently high.7 Indeed, in the past two decades, a number of regulatory authorities began taking steps to regulate certain phthalates. Most notably:

  • In 2005, the European Commission identified DBP, DEHP, and BBP as reproductive toxicants (Directive 2005/84/EC), and the European Union banned the use of these phthalates as ingredients in cosmetics (Directive 2005/90/EC).
  • In 2008, Congress banned the use of DBP, DEHP, and BBP in children’s toys at concentrations higher than 0.1%. See 15 U.S.C. § 2057c.
  • The EU added four phthalates (BBP, DEHP, DBP, and DIBP) to the EU’s list of Substances of Very High Concern (SVHCs) and, subsequently, to its Authorization List, which lists substances that cannot be placed on the market or used after a given date, unless authorization is granted for specific uses. BBP, DEHP, DBP, and DIBP were banned as of February 21, 2015, except for the use of these phthalates in the packaging of medicinal products.
  • In 2012, the FDA issued a statement discouraging the use of DBP and DEHP in drugs and biologic products. At the time, the agency said that these phthalates could have negative effects on human endocrine systems and potentially cause reproductive and developmental problems.8

More recently, phthalate exposure through food has become a trending topic among consumer advocates. Phthalates are not used in food, but can migrate into food through phthalates-containing materials during food processing, storing, transportation, and preparation. Certain studies report that ingestion of food accounts for the predominant source of phthalate exposure in adults and children. However, in assessing DEHP, the ATSDR noted that the current literature on “contamination of foodstuffs comes from outside the United States or does not reflect typical exposures of U.S. consumers; therefore, it is uncertain whether and for which products this information can be used in U.S.-centered exposure and risk calculations.”9 Further, the concentration of phthalates found in food are very low-level—multiples lower than the doses used in animal toxicology studies.10

In 2017, a study published on the advocacy site “kleanupkraft.org” stated that phthalates were detected in 29 of 30 macaroni and cheese boxes tested.11 The study notes that “DEHP was found most often in the highest amounts.” Notably, however, the “amounts” are provided without any context, likely because there is no universally accepted threshold of unsafe phthalate consumption. Thus, although the boxed macaroni and cheese study found “that DEHP, DEP, DIBP, and DBP were frequently detected in the cheese items tested,” and “[t]he average DEHP concentration was 25 times higher than DBP, and five times higher than DEP,” none of this explains whether these numbers are uniquely high and/or dangerous to humans. Meanwhile, on December 10, 2019, the European Food Safety Authority announced an updated risk assessment of DBP, BBP, DEHP, DINP, and DIDP, and found that current exposure to these phthalates from food is not of concern for public health.12

Phthalate Litigation

For years, phthalates in food have been targeted by environmental groups seeking to eliminate use of phthalates in food packaging and handling equipment. Most recently, several lawsuits were filed against boxed macaroni and cheese manufacturers alleging misrepresentation and false advertising due to their undisclosed alleged phthalate contamination. See, e.g., McCarthy, et al. v. Annie’s Homegrown, Inc., Case No. 21-cv-02415 (N.D. Cal. Apr. 2, 2021). Perhaps acknowledging that the amounts contained in the food packages have not been shown to present any danger, these claims are being pursued as consumer fraud claims based on failure to identify phthalates as an ingredient, rather than as personal injury claims.

Besides this recent litigation, however, there has been a notable dearth of phthalate litigation. This is likely due to several factors: First, in general, courts have rejected false claim lawsuits involving trace amounts of a contaminant chemical. See, e.g., Tran v. Sioux Honey Ass’n, Coop., 471 F. Supp. 3d 1019, 1025 (C.D. Cal. 2020) (collecting cases). For example, in Axon v. Citrus World, Inc., 354 F. Supp. 3d 170 (E.D.N.Y. 2018), the Court dismissed plaintiff’s claim that the use of the word “natural” constituted false advertising because the product contained trace amounts of weed killer. Id. at 182–84. The Court based this dismissal, in part, on the fact that the trace amounts of the commonly used pesticide was “not an ‘ingredient’ added to defendant’s products; rather, it is a substance introduced through the growing process.” Id. at 183. Similarly, phthalate is not an intentionally added ingredient—instead, it is a substance introduced, if at all, in trace amounts at various points throughout the manufacturing, handling, and packaging process. Second, proving that phthalate exposure from a particular food item caused an alleged injury would be extremely difficult. As mentioned above, there is no direct scientific evidence linking low-level phthalate exposure in humans to reproductive problems, cancer, or any other injury. Instead, plaintiffs must rely on animal studies where the subject, most commonly a rat, was exposed to enormous amounts of phthalates, many multiples of the amount that would be found in food. Moreover, the pervasive nature of phthalates makes it difficult to pinpoint any particular product as the source of the injury. If every food item a plaintiff ever consumed has been touched by a phthalate-containing material, it seems near impossible to prove that one particular food caused the alleged injury.

Although phthalate litigation has thus far proven unpopular, this landscape could change in the near future due to increased regulatory scrutiny. On December 20, 2019, the EPA stated that DEHP, DIBP, DBP, BBP, and dicyclohexyl phthalate were five of 20 high-priority chemicals undergoing risk evaluation pursuant to the Toxic Substances Control Act.13 The categorization of these phthalates as high-priority initiates a three- to three-and-a-half-year risk evaluation process, which concludes in a finding of whether the chemical substance presents an unreasonable risk of injury to health or the environment under the conditions of use.14 Although the same causation and product identification issues will remain, a revised risk analysis by the EPA may lead to increased phthalate litigation.

The views expressed in this article are exclusively those of the authors and do not necessarily reflect those of Sidley Austin LLP and its partners. This article has been prepared for informational purposes only and does not constitute legal advice. This information is not intended to create, and receipt of it does not constitute, a lawyer-client relationship. Readers should not act upon this without seeking advice from professional advisers.

References

  1. The most commonly used phthalates are di-(2-ethylhexyl) phthalate (DEHP), diisononyl phthalate (DINP), benzyl butyl phthalate (BBP), di-n-butyl phthalate (DBP), and diethyl phthalate (DEP). See Angela Giuliani, et al., Critical Review of the Presence of Phthalates in Food and Evidence of Their Biological Impact, 17 INT. J. ENVIRON. RES. PUBLIC HEALTH 5655 (2020).
  2. COWI A/S, Data on Manufacture, Import, Export, Uses and Releases of Dibutyl Phthalate (DBP), As Well As Information on Potential Alternatives To Its Use 10-11 (Jan. 29, 2009). http://echa.europa.eu/documents/10162/
    13640/tech_rep_dbp_en.pdf (observing European Council for Plasticizers and Intermediates (ECPI)); Agency for Toxic Substances & Disease Registry, DI-n-BUTYL PHTHALATE, Production, Import/Export, Use, and Disposal (Jan. 3, 2013). http://www.atsdr.cdc.gov/ToxProfiles/tp135-c5.pdf; Peter M. Lorz, et al., Phthalic Acid and Derivatives. ULLMANN’S ENCYCLOPEDIA OF INDUSTRIAL CHEMISTRY (Wiley-VCH: Weinheim, 2000); Lowell Center for Sustainable Production, Phthalates and Their Alternatives: Health and Environmental Concerns 4 (Jan. 2011). https://www.sustainableproduction.org/downloads/PhthalateAlternatives-January2011.pdf.
  3.  Michael D. Shelby, NTP-CERHER Monograph on the Potential Human Reproductive and Developmental Effects of Di (2-Ethylhexyl) Phthalate (DEHP). National Toxicology Program, HHS. NIH Publication No. 06-4476 at 2–3 (Nov. 2006).
  4.  See Chris E. Talsness, et al., Components of Plastic: Experimental Studies in Animals and Relevance for Human Health, 364 PHIL. TRANS. R. SOC. B 2079, 2080 (2009). https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2873015/pdf/rstb20080281.pdf.
  5. Agency for Toxic Substances & Disease Registry, Toxicology Profile for Di(2-Ethylhexyl) Phthalate (DEHP), Draft for Public Comment 3 (Dec. 2019). https://www.atsdr.cdc.gov/toxprofiles/tp9.pdf.
  6. FDA Guidance for Industry, Limiting the Use of Certain Phthalates as Excipients in CDER-Regulated Products. HHS, FDA. (Dec. 2012).
  7. NIH Publication No. 06-4476 at 2–3, supra n.3.
  8. FDA Guidance for Industry. Limiting the Use of Certain Phthalates as Excipients in CDER-Regulated Products. HHS, FDA. (Dec. 2012).
  9. Toxicology Profile for Di(2-Ethylhexyl) Phthalate (DEHP) at 362, supra n.5.
  10. Compare id. at 5 (measuring effects of phthalate oral exposure in mg/kg/day) with Samantha E. Serrano, et al., Phthalates and diet: a review of the food monitoring and epidemiology data, 13 ENVIRON. HEALTH 43 (2014) (measuring phthalate concentration in food in μg/kg).
  11. Testing Finds Industrial Chemical Phthalates in Cheese, Coalition for Safer Food Processing and Packaging. http://kleanupkraft.org/data-summary.pdf.
  12. FAQ: phthalates in plastic food contact materials. European Food Safety Authority. (Dec. 10, 2019).
  13. EPA Finalizes List of Next 20 Chemicals to Undergo Risk Evaluation under TSCA. U.S. Environmental Protection Agency. (Dec. 20, 2019).
  14.  Risk Evaluations for Existing Chemicals under TSCA. U.S. Environmental Protection Agency.