The CDC has declared the Chipotle E. coli outbreaks over. As for its origin(s), we may never know. Yesterday the CDC provided its latest and final update regarding the two outbreaks, stating that investigators used whole genome sequencing to dig a bit deeper, and isolates tested from those sickened in the second outbreak (sickened five people in three states) were not genetically related to isolates from the people who fell ill in the initial outbreak (55 sickened in 11 states, with 21 hospitalizations).
“We are pleased to have this behind us and can place our full energies to implementing our enhanced food safety plan that will establish Chipotle as an industry leader in food safety,” said Steve Ells, founder, chairman and co-CEO of Chipotle in a company statement. “We are extremely focused on executing this program, which designs layers of redundancy and enhanced safety measures to reduce the food safety risk to a level as near to zero as is possible. By adding these programs to an already strong and proven food culture, we strongly believe that we can establish Chipotle as a leader in food safety just as we have become a leader in our quest for the very best ingredients we can find.”
While the outbreaks “appear” to be over, the fact that the source will remain a mystery is a bit unsettling. All the CDC can tell us is that the “likely” source was a common meal item or ingredient served at Chipotle Mexican Grill. Regulatory officials simply cannot trace a food or ingredient to the outbreak. “When a restaurant serves foods with several ingredients that are mixed or cooked together and then used in multiple menu items, it can be more difficult for epidemiologic studies to identity the specific ingredient that is contaminated,” according to the CDC’s final update on the outbreak.
The most recent reported illness started on December 1, 2015. No deaths were reported as a result of either of the outbreaks.
Today Chipotle released its Q4 2015 earnings, reporting a 6.8% decrease in revenue ($997.5 million) compared to Q4 2014. However, 2015 revenue increased 9.6% over 2014.
The problems are not over for the restaurant chain either. On January 28, Chipotle was served another subpoena that broadened the scope of the existing DOJ investigation. The company stated the following in a release, “The new subpoena requires us to produce documents and information related to company-wide food safety matters dating back to January 1, 2013, and supersedes the subpoena served in December 2015 that was limited to a single Chipotle restaurant in Simi Valley, California. We intend to fully cooperate in the investigation.”
As part of FDA’s FSMA training vision, the agency has announced two funding opportunities aimed at providing outreach, education and training on the FSMA preventive controls rules.
The Native American Tribes Outreach, Education and Training cooperative agreement will provide up to $750,000 annually for three years. “FDA anticipates that federally recognized tribes will need food safety education and training that addresses the regulatory requirements of the applicable FSMA rules and also encompasses specific cultural practices associated with produce farming and food manufacturing/processing within tribes relevant to their status as sovereign nations,” according to an FDA release.
The Local Food Producer Outreach, Education, and Training agreement will award local food producers $1.5 million this fiscal year with the potential for two more years if federal funds are available. It aims to assist small and mid-size producers/processors with particular practices related to their scale of production and management practices. The agreement will focus on those involved in local food systems while considering “account diversified, sustainable, organic and identity-preserved agricultural production and processing.”
Dole’s bagged salad was the culprit of three more Listeria cases last month. Last week the FDA released the latest figures on the outbreak, which began in July 2015. An investigation was not initiated until September, and the source of Listeria—a Dole processing facility in Springfield, Ohio—was not known until January 2016. The CDC reports that 15 people, all which were hospitalized, in eight states have been infected with Listeria traced back to the Dole facility since July.
On January 21 Dole told the FDA and CDC that it both stopped producing all packaged salads at the Springfield facility and stated that it would be withdrawing all packaged salads on the market that were produced there. The company initiated the recall of the salads, which were sold under the brand names Dole, Fresh Selections, Simple Truth, Marketside, The Little Salad Bar, and President’s Choice Organics, last week. The bagged salads were distributed in 24 states.
The Public Health Agency of Canada also issued a food recall warning for products made at the Springfield facility. The products were shipped to six Canadian provinces.
When it comes to preventing foodborne illness, staying ahead of the game can be an elusive task. In light of the recent outbreaks affecting Chipotle (norovirus, Salmonella, E. coli) and Dole’s packaged salad (Listeria), having the ability to identify potentially deadly outbreaks before they begin (every time) would certainly be the holy grail of food safety.
One year ago IBM Research and Mars, Inc. embarked on a partnership with that very goal in mind. They established the Consortium for Sequencing the Food Supply Chain, which they’ve touted as “the largest-ever metagenomics study…sequencing the DNA and RNA of major food ingredients in various environments, at all stages in the supply chain, to unlock food safety insights hidden in big data”. The idea is to sequence metagenomics on different parts of the food supply chain and build reference databases as to what is a healthy/unhealthy microbiome, what bacteria lives there on a regular basis, and how are they interacting. From there, the information would be used to identify potential hazards, according to Jeff Welser, vice president and lab director at IBM Research–Almaden.
“Obviously a major concern is to always make sure there’s a safe food supply chain. That becomes increasingly difficult as our food supply chain becomes more global and distributed [in such a way] that no individual company owns a portion of it,” says Welser. “That’s really the reason for attacking the metagenomics problem. Right now we test for E. coli, Listeria, or all the known pathogens. But if there’s something that’s unknown and has never been there before, if you’re not testing for it, you’re not going to find it. Testing for the unknown is an impossible task.” With the recent addition of the diagnostics company Bio-Rad to the collaborative effort, the consortium is preparing to publish information about its progress over the past year. In an interview with Food Safety Tech, Welser discusses the consortium’s efforts since it was established and how it is starting to see evidence that using microbiomes could provide insights on food safety issues in advance.
Food Safety Tech:What progress has the Consortium made over the past year?
Jeff Welser: For the first project with Mars, we decided to focus around pet food. Although they might be known for their chocolates, at least half of Mars’ revenue comes from the pet care industry. It’s a good area to start because it uses the same food ingredients as human food, but it’s processed very differently. There’s a large conglomeration of parts in pet food that might not be part of human food, but the tests for doing the work is directly applicable to human food. We started at a factory of theirs and sampled the raw ingredients coming in. Over the past year, we’ve been establishing whether we can measure a stable microbiome (if we measure day to day, the same ingredient and the same supplier) and [be able to identify] when something has changed.
At a high level, we believe the thesis is playing out. We’re going to publish work that is much more rigorous than that statement. We see good evidence that the overall thesis of monitoring the microbiome appears to be viable, at least for raw food ingredients. We would like to make it more quantitative, figure out how you would actually use this on a regular basis, and think about other places we could test, such as other parts of the factory or machines.
FST: What are the steps to sequencing a microbiome?
Welser: A sample of food is taken into a lab where a process breaks down the cell walls to release the DNA and RNA into a slurry. A next-generation sequencing machine identifies every snippet of DNA and RNA it can from that sample, resulting in huge amounts of data. That data is transferred to IBM and other partners for analysis of the presence of organisms. It’s not a straightforward calculation, because different organisms often share genes or have similar snippets of genes. Also, because you’ve broken everything up, you don’t have a full gene necessarily; you might have a snippet of a gene. You want to look at different types of genes and different areas to identify bad organisms, etc. When looking at DNA and RNA, you want to try to determine if an organism is currently active.
The process is all about the analysis of the data sequence. That’s where we think it has a huge amount of possibility, but it will take more time to understand it. Once you have the data, you can combine it in different ways to figure out what it means.
FST: Discuss the significance of the sequencing project in the context of recent foodborne illness outbreaks. How could the information gleaned help prevent future outbreaks?
Welser: In general, this is exactly what we’re hoping to achieve. Since you test the microbiome at any point in the supply chain, the hope is that it gives you much better headlights to a potential contamination issue wherever it occurs. Currently raw food ingredients come into a factory before they’re processed. If you see the problem with the microbiome right there, you can stop it before it gets into the machinery. Of course, you don’t know whether it came in the shipment, from the farm itself, etc. But if you’re testing in those places, hopefully you’ll figure that out as early as possible. On the other end, when a company processes food and it’s shipped to the store, it goes onto the [store] shelves. It’s not like anyone is testing on a regular basis, but in theory you could do testing to see if the ingredient is showing a different microbiome than what is normally seen.
The real challenge in the retail space is that today you can test anything sitting on the shelves for E. coli, Listeria, etc.— the [pathogens] we know about. It’s not regularly done when [product] is sitting on the shelves, because it’s not clear how effectively you can do it. It still doesn’t get over the challenge of how best to approach testing—how often it needs to be done, what’s the methodology, etc. These are all still challenges ahead. In theory, this can be used anywhere, and the advantage is that it would tell you if anything has changed [versus] testing for [the presence of] one thing.
FST: How will Bio-Rad contribute to this partnership?
Welser: We’re excited about Bio-Rad joining, because right now we’re taking samples and doing next-generation sequencing to identify the microbiome. It’s much less expensive than it used to be, but it’s still a fairly expensive test. We don’t envision that everyone will be doing this every day in their factory. However, we want to build up our understanding to determine what kinds of tests you would conduct on a regular basis without doing the full next-gen sequencing. Whenever we do sequencing, we want to make sure we’re doing the other necessary battery of tests for that food ingredient. Bio-Rad has expertise in all these areas, and they’re looking at other ways to advance their testing technology into the genomic space. That is the goal: To come up with a scientific understanding that allows us to have tests, analysis and algorithms, etc. that would allow the food industry to monitor on a regular basis.
While illnesses linked to Chipotle restaurants are grabbing headlines, the federal government recently took steps to improve how manufacturers and packagers process and handle food. Last year FDA released several final FSMA rules, giving food companies a roadmap for ensuring food safety. The proactive approach of the regulations can help companies avoid the hazards that lead to disease and allergen contaminations, and even legal troubles. Indeed, unsafe food handling can carry costly consequences from both a financial standpoint as well as in lives lost or harmed.
In 2011, the good intentions of a family-owned cantaloupe company produced tragic results. The company, seeking more natural melons, followed a consultant’s advice and discontinued the chlorine rinse used to wash off contaminants. A Listeria outbreak followed, killing 33 people and hospitalizing 147 more. Although prosecution is rare in foodborne disease outbreaks, the company owners were sentenced to probation, home detention, community service, and $150,000 each in restitution.
A more egregious case occurred in September 2015, when the former CEO of the Peanut Corporation of America was convicted of knowingly shipping Salmonella-tainted peanut butter, which had caused an outbreak that killed nine people and sickened hundreds more. Stewart Parnell was sentenced to 28 years in federal prison.
The new regulations require companies to undertake hazard analyses of their production, along with remedial steps. This scrutiny leads to the creation of a written plan that details the controls to prevent contamination and establish a schedule for periodic testing. This analysis and control system is called the Hazard Analysis Critical Control Point, or HACCP.
Adherence to regulations doesn’t necessarily protect a company from liability, but not adhering can sound a company’s death knell when there’s a problem. The following are five ways in which companies can protect themselves:
Put food safety first. The company culture must revolve around it. The message that the HACCP plan is to be followed must be relayed to all levels of the organization. Otherwise, companies can face severe consequences, based on the question, “Did the company behave badly enough to face strong punitive damages?”
Concentrate on internal communications. In many cases, food recalls happen because of a breakdown in the communication process.
Hire accredited consultants. Make sure that your consultants are qualified and have been accredited by an appropriate body such as the International HACCP Alliance or The Seafood HACCP Alliance.
Don’t overlook supplied products. Suppliers should adhere to strict contamination-prevention protocols, but don’t assume they follow guidelines completely or have flawless processes. Your contracts with them should require that they periodically audit their facilities and share the audit results with you.
Label clearly. Packaging language might state that a product is manufactured in facilities that also process allergens such as peanuts and tree nuts. These types of warnings allow consumers to make up their own minds. It is also a reminder that HACCP plans must address prevention of cross-contamination (i.e., putting cleaning protocols in place if products with and without allergens are processed on the same equipment).
Many problems involve internal slip-ups or problems with supplied ingredients that allow contaminated food to reach consumers. If the contamination becomes known—and it often is not, when victims don’t equate their illnesses with tainted food—the businesses involved often face strict liability, meaning they carry some blame even if they didn’t act in a negligent manner and cause the problem directly.
Keep in mind that liability isn’t the only consequence of non-compliance. A recall or outbreak can damage the reputation of the company and the product. The cantaloupe tragedy sent sales of the melons plummeting, even in states not linked to the outbreak.
To minimize the hit on sales, a recall team should be in place, with a plan modeled on crisis management principles. Team members should come from all divisions of the company, including transportation and distribution to track down products, and communications to manage messaging. Legal counsel should be on board to advise on the ramifications.
When it comes to foodborne outbreaks, it’s a matter of taking classic prevention and preparation steps. Do everything you can to keep it from happening, but be ready just in case it does.
High-profile food recalls and food-borne illnesses continue to keep food safety top of mind. Yet, many in the industry are still struggling to put the best practices we’ve learned over the years about how to properly secure our global food chain into practice. Put simply: The focus needs to be on prevention rather than reaction.
Food safety procedures must be strengthened across the board to meet increasing regulatory pressures and prevent massive recalls and illness outbreaks. FSMA puts the principles of prevention into law. The first major update of federal food safety laws since 1938, it was signed into law by President Obama at the start of 2011. After years of debate, it is now finalized and implementation can begin. The objective of FSMA is to ensure that the U.S. food supply is safe by shifting the focus from reaction to prevention. Now, who can argue with that?
FSMA also pushes the FDA to extend beyond its traditional reactive role. For the first time, the FDA has the power to stop unsafe and possibly contaminated food from entering the food supply.
Let’s take a quick step back so we can explore how to best put it into action. FSMA is made up of five primary provisions:
Preventive controls
Inspection and compliance
Imported food safety
Response
Enhanced partnerships
I’d argue that the first provision is the true heart of FSMA: Prevention. The first provision focuses on preventative controls and provides a framework for an effective food safety program. In FSMA, this is broken into five key parts, including hazard analysis, preventative controls, monitoring, corrective action and verification. But what does that mean to you? You can best comply with these requirements by implementing better visualization, documentation and communication tools. Let’s walk through each section and the types of tools that you should consider.
Hazard Analysis. Most companies have strong HACCP plans in place, taking account food safety hazards at all stages of production. Risk assessment and risk management must be taken into account and critical control points defined. However, to manage this going forward, consider tools that enable visibility into the current and historical situation at those control points to allow your team to see their proximity to each other, as well as to other components in the plant.
Preventive Controls. Preventative controls are also called out as part of the FSMA requirements. This includes food allergen, supply-chain and sanitation controls in place, as well as sound recall plans. Again, critical control points (CCPs) are the key to ensuring your controls are effective. Also, consider trying indicator test points to stay one step ahead! Indicator test points, as advocated by food safety leader, John Butts, are one or more steps removed from your CCPs. By testing in these areas, you can identify possible risk areas before they even reach control points. This enables a much more proactive approach.
Monitoring. Your plant should have a monitoring plan that includes written procedures for monitoring preventive controls and how frequently they should be performed. This plan should take into account zone coverage, randomization, test frequency, test timing and sampling order. Depending on the business and regulatory rules of a plant, testing should include non-food contact and food contact surfaces. In order to ensure that testing is representative of the conditions in the plant, randomization of test points is important. In addition, test frequency and test timing should be defined, and organizations should seek tools that help to automate these business rules.
Corrective Action. Hope for the best, but always plan for the worst. What is your corrective action plan? You must have a written procedure for identifying and correcting a problem. For both your plant and for regulators, a clear record of your plan and that the steps were followed to close out any issues is required. Make sure that the team understands the steps that are required, number of re-tests and any recall requirements. Look for tools that automatically alert the relevant team members of the situation and track response and testing so that you can easily share this level of detail as needed.
Verification. Trust but verify. Having a plan is only half the job. Using your environmental and finished product testing programs to ensure that controls and corrective actions are effective turns your plan into action. Rapid testing technologies keep the time between testing and results tight. Also, communication of verification results keeps the team coordinated around food safety.
The move to more preventative food safety procedures does not have to create massive headaches. Compliance with FSMA will ultimately help your business and guarantee that you are providing safe food for your customers to consume. Many food companies have been implementing these best-practice guidelines for years. Thanks to FMSA, we all now get an easy-to-follow checklist.
Shifting from reaction to prevention makes food safer—and now, it is also the law. The first step is to make sure you have a good understanding of the components. Only then can you find the best tools and technologies to support you. Lastly, make sure that your team is well aligned around the goals and objectives of your food safety program. Together, we can make food safer.
After publishing data from its 2014 Pesticide Data Program (PDP) earlier this week, the USDA has stated that it is not concerned with the level of pesticide chemical residues in the U.S. food supply. More than 99% of products sampled through the USDA’s Pesticide Data Program had residues below EPA tolerances (residues exceeding the tolerance were detected in 0.36% of samples).
“The PDP plays an essential role in ensuring the safety of the U.S. food supply. Under the Federal Food, Drug, and Cosmetic Act, the FDA has authority to take enforcement action when a food bears or contains unlawful pesticide chemical residues,” said Susan Mayne, Ph.D., director of FDA’s Center for Food Safety and Applied Nutrition in a press release. “By providing an accurate assessment of pesticide levels in the most commonly consumed commodities in America, the PDP generally confirms the U.S. food supply is safe with respect to pesticide chemical residues.”
Among the foods tested were fresh and processed fruits and vegetables, oats, rice, and salmon. The findings from the PDP annual summary can be accessed via the USDA’s website.
Stephen Ostroff, M.D., acting commissioner for food and drugs at FDA, released his final blog on 2015 FDA achievements earlier this week, highlighting the strides made in food safety. As expected, Ostroff pointed to FSMA and how it will help industry take stronger steps in preventing contamination, improving safety in growing produce and holding importers accountable. He offered a few agency high points in food safety for 2015:
Progress in partnership with government and global parties in fighting antibiotic resistance and promoting the appropriate use of antibiotics, as well as improving data collection under the National Antimicrobial Resistance Monitoring Program
Why has the food industry been seeing more Listeria outbreaks in recent years? What is the reason behind it? According to Jeff Mitchell, vice president of food safety at Chemstar, the prevalence in Listeria-related recalls may have more to do with the fact that industry is collecting more meaningful data. During a Q&A with Gina Kramer, founder and executive director of Savour Food Safety International, Inc., Mitchell discusses the methods through which industry is collecting data and how food companies should be using a sanitation program to rid facilities of resident Listeria at the 2015 Food Safety Consortium.
Attend the Listeria Detection & Control Workshop, May 31–June 1 in St. Paul, MN | LEARN MOREAccording to the CDC’s Foodborne Outbreak Online Database (FOOD Tool), there were 29 Listeria outbreaks between 2010 and 2014, resulting in 325 illnesses and 68 deaths (nearly a 21% fatality rate). In light of the recent reports that the U.S. Department of Justice is looking into Blue Bell Creameries following the Listeria outbreak in its facilities that killed three people, food companies need to have a strong mitigation and control program before it’s too late. The government is placing is a higher level of accountability on employees at all levels within food organizations and no one, including company executives, are immune to it.
“It’s extremely important that we understand how deadly Listeria is,” said Gina Nicholson-Kramer, founder and executive director at Savour Food Safety International, Inc. during a Listeria workshop at the 2015 Food Safety Consortium. “We’re put here to protect our consumer.”
Containing what may be growing (and rapidly spreading) within the nooks and crannies of a facility is a challenge. To learn more about how to prevent product contamination within all areas of food production, read the column by Nicholson-Kramer and Jeff Mitchell, vice president of food safety at Chemstar, Activate Your Listeria Mitigation and Control Program.
Psychrophilic bacteria (grows well in cold temperatures)
Adheres to surfaces and creates biofilms on equipment that is difficult to remove (Preventing transient Listeria from becoming resident Listeria is critical)
This website uses cookies so that we can provide you with the best user experience possible. Cookie information is stored in your browser and performs functions such as recognising you when you return to our website and helping our team to understand which sections of the website you find most interesting and useful.
Strictly Necessary Cookies
Strictly Necessary Cookies should be enabled at all times so that we can save your preferences for these cookie settings.
We use tracking pixels that set your arrival time at our website, this is used as part of our anti-spam and security measures. Disabling this tracking pixel would disable some of our security measures, and is therefore considered necessary for the safe operation of the website. This tracking pixel is cleared from your system when you delete files in your history.
We also use cookies to store your preferences regarding the setting of 3rd Party Cookies.
If you visit and/or use the FST Training Calendar, cookies are used to store your search terms, and keep track of which records you have seen already. Without these cookies, the Training Calendar would not work.
If you disable this cookie, we will not be able to save your preferences. This means that every time you visit this website you will need to enable or disable cookies again.
Cookie Policy
A browser cookie is a small piece of data that is stored on your device to help websites and mobile apps remember things about you. Other technologies, including Web storage and identifiers associated with your device, may be used for similar purposes. In this policy, we say “cookies” to discuss all of these technologies.
Our Privacy Policy explains how we collect and use information from and about you when you use This website and certain other Innovative Publishing Co LLC services. This policy explains more about how we use cookies and your related choices.
How We Use Cookies
Data generated from cookies and other behavioral tracking technology is not made available to any outside parties, and is only used in the aggregate to make editorial decisions for the websites. Most browsers are initially set up to accept cookies, but you can reset your browser to refuse all cookies or to indicate when a cookie is being sent by visiting this Cookies Policy page. If your cookies are disabled in the browser, neither the tracking cookie nor the preference cookie is set, and you are in effect opted-out.
In other cases, our advertisers request to use third-party tracking to verify our ad delivery, or to remarket their products and/or services to you on other websites. You may opt-out of these tracking pixels by adjusting the Do Not Track settings in your browser, or by visiting the Network Advertising Initiative Opt Out page.
You have control over whether, how, and when cookies and other tracking technologies are installed on your devices. Although each browser is different, most browsers enable their users to access and edit their cookie preferences in their browser settings. The rejection or disabling of some cookies may impact certain features of the site or to cause some of the website’s services not to function properly.
Individuals may opt-out of 3rd Party Cookies used on IPC websites by adjusting your cookie preferences through this Cookie Preferences tool, or by setting web browser settings to refuse cookies and similar tracking mechanisms. Please note that web browsers operate using different identifiers. As such, you must adjust your settings in each web browser and for each computer or device on which you would like to opt-out on. Further, if you simply delete your cookies, you will need to remove cookies from your device after every visit to the websites. You may download a browser plugin that will help you maintain your opt-out choices by visiting www.aboutads.info/pmc. You may block cookies entirely by disabling cookie use in your browser or by setting your browser to ask for your permission before setting a cookie. Blocking cookies entirely may cause some websites to work incorrectly or less effectively.
The use of online tracking mechanisms by third parties is subject to those third parties’ own privacy policies, and not this Policy. If you prefer to prevent third parties from setting and accessing cookies on your computer, you may set your browser to block all cookies. Additionally, you may remove yourself from the targeted advertising of companies within the Network Advertising Initiative by opting out here, or of companies participating in the Digital Advertising Alliance program by opting out here.