Tag Archives: Focus Article

Camila Gadotti, 3M
In the Food Lab

Examining the Role of Food Safety During R&D

By Camila Gadotti, M.S.
1 Comment
Camila Gadotti, 3M

Research and development (R&D) is an essential starting point toward the creation or modification of new and exciting food products, processes and packaging. To ensure that a product is safe for consumption, food safety should be considered during the initial stages of a product’s lifecycle. Incorporating food safety into R&D can be tricky, as safety considerations may change the initial idea or concept of a new food product. For example, the idea of a freshly squeezed orange juice in every supermarket shelf is appealing; however, without pasteurization, that juice will not be safe for consumption, nor will it have the desired shelf life. Adding raw chopped garlic to a hummus product makes it taste great, but will it be safe for consumption after being on the shelf for a month?

To better understand how safety of new products is assured from concept to launch, I spoke with two R&D scientists about food safety considerations during new product development. The interviewees, Maria and Laura, work for the same large food manufacturer, which is located in the Midwest, in the snack foods and breakfast cereals categories, respectively. They both confirm that the R&D team follows a specific procedure during the product concept phase—one that places food safety at the forefront. The team starts by determining how the new product compares to food safety regimens already in place with other products that the company manufactures. If the product is a line extension with only a few changes to an existing formulation, the food safety concerns are likely to be low, and the food safety program already in place is adapted to meet the safety needs of the new product. However, if the product being developed is highly differentiated from other products manufactured by the company, food safety moves into a more central role throughout the development cycle.

According to Maria and Laura, the first step in ensuring food safety for a new product is for the development scientists to have in-depth discussions about the product’s formulation, ingredients and supply sources. These three aspects, along with the planned manufacturing process, are then evaluated through a hazard assessment. The hazard assessment is comprised of microbiological, quality, regulatory, stability and physical hazard assessments. Ingredients that pose food safety concerns without prior controls and process conditions are identified. The quality team determines controls for these ingredients and subsequently involves process engineers to verify that process conditions are attainable and will provide proper control for the hazards identified. A complete HAACP plan is put in place for the new product production, taking into consideration equipment cleanability and location, traffic control for ingredients and operators, and air handling systems. The hazard assessment is documented in detail and must be approved by the quality manager before production runs can begin and development can resume. Although the entire process is led by R&D, multiple other functions are involved and consulted throughout the process.

Manufacturing processes, formulation and market availability of ingredients drive the food safety of a new product, with manufacturing processes and formulation usually being the key drivers. “However, in cases like the recent shortage of eggs due to the avian flu crisis, finding substitutions for ingredients in shortage becomes an important driver for food safety,” says Maria. Laura says that at times, product formulations can change due the integrity of the ingredient or its source. In such cases, a similar ingredient from a credible source is chosen and the safety of the product is re-assessed. There are critical quality and food safety elements that must be considered in the product design phase to prevent issues later in development. When R&D professionals keep these elements top-of-mind when considering formulation and ingredient sourcing, everyone benefits—from the company to consumers.

Although consumer confidence in the safety of the U.S. food supply is slipping (11% said they were “very confident” in the safety of the food supply, down from 15% in 2013; 50% said they were “somewhat confident”, down from 55% in 2013, according to the International Food Information Council’s 2015 Food and Health Survey), the interview with Maria and Laura shows that manufacturers are putting significant effort into developing safe food products. It is equally as important for suppliers and vendors to have robust food safety programs to build strong relationships with manufacturers. Food companies have a lot to lose if a product they develop is, or becomes, unsafe for consumption. Not only can the average cost of a recall add up to $10 million in direct costs to a food company, lost sales and the impact to the company’s market value, brand reputation, and business relationships is major. Some companies never recover from the punch. Through taking the time to audit suppliers, screen new ingredients, and make robust prototypes, food companies can be more confident in the safety of their innovative new products as they go through the development process.

Randy Fields, Repositrak
FST Soapbox

How to Button Up Your Supply Chain

By Randy Fields
No Comments
Randy Fields, Repositrak

Donald Bowersox, a long-time business professor at Michigan State University and one of the progenitors of modern supply chain management, once said, “The job of supply chain is clearly a senior management challenge, and it’s one that sits right alongside the other C-level jobs in the corporation. We may call it something different going forward, but basically it will remain the stewardship of moving products from the material origin points all the way through the process of conversion to the end consumers efficiently, effectively, and relevantly. That challenge is a big one and will continue to be for a long time. So I don’t see a next organizational evolution. Instead, I see the supply chain manager becoming more deeply involved in the corporate strategic initiatives and being part of the C-team management.”

Applying this approach to food safety in the supply chain has become more critical during the last few years as a result of regulatory, market and consumer pressures. At the start of this century, only 15 years ago, the food safety director rarely, if ever, interacted with the CEO. Many retailers didn’t even have such a position, or it was combined with quality control or loss prevention.

Now, not only does the top food safety manager have the ear of the CEO, he or she is engaged with all senior executives. Part of this is the result of the Food Safety Modernization Act, which holds those officers personally liable for a wide variety of preventable incidents. Likely bigger causes for the shift are the changing market and the changing consumer, which both relate directly to the company’s brand reputation. And in the food business, everything starts and stops with the supply chain.

Why? Because the supply chain is ground zero for the failures that are responsible for causing food safety problems. And the supply chain is where food safety problems are prevented. It is the choke point or series of choke points that allow or prevent spoiled and tainted product from getting to the consumer. It is also the process by which that unsaleable product is reclaimed so as to ensure it never enters the marketplace.

It is critical for the food safety manager to work closely with the merchandisers and the store operations teams, as they have the relationships with suppliers and work to ensure that standards for everything from ingredients to production are met with every shipment. But it’s even more critical for those professionals to work closely with the supply chain team to determine weak links in the system and address those pressure points before they cause real damage. Without food safety-supply chain collaboration, the risks to a company’s reputation multiply. With it, the likelihood of a food safety incident reaching consumers diminishes tremendously.

It’s becoming clearer every day—if you don’t button up your supply chain, somebody else, namely the government or the consumer, will and the results won’t be pleasant.

Gina Kramer
Food Safety Think Tank

Activate Your Listeria Mitigation and Control Program

By Gina R. Nicholson-Kramer, Jeff Mitchell
No Comments
Gina Kramer

Listeria: It has been in the news and in our food throughout the past year. It has cost companies millions of dollars in recalls, shutdowns and mitigation; it has cost the government thousands of dollars in outbreak investigation, inspection and follow-up; and it has cost millions of dollars in medical bills for victims and for some, it has cost their lives.

I have asked Jeff Mitchell, vice president of food safety at Chemstar, to share his knowledge about Listeria mitigation and control, and to talk about the research that supports the innovative program that Chemstar uses with its customers.

Listeria Mitigation & Control Program

By Jeff Mitchell

Jeff Mitchell, Chemstar
Jeff Mitchell, Vice President of Food Safety, Chemstar

Thus far this year there have been several recalls of ready-to-eat (RTE) foods due to contamination with Listeria monocytogenes. Efforts to prevent contamination of food products with Listeria monocytogenes must be conducted at all levels of production. This is a difficult task given the fact that the bacteria is so widespread in the environment.  Focusing efforts in your process where contamination risk is of greatest concern to the consumer is important.  There is solid evidence that commercially prepared foods that have been contaminated with Listeria monocytogenes has occurred after the food product has been subjected to an initial lethality treatment. The product may be exposed in this area as a result of slicing, peeling, packing, re-bagging, cooling, or other procedures that may expose the product to potential contamination.

Listeria monocytogenes survives extremely well in food processing and retail food preparation environments. It may be introduced into your facility through a variety of routes, including:

  • Raw materials
  • Employees’ shoes or clothes
  • Equipment (boxes, crates, carts)

Controlling traffic flow into critical areas of the process can help reduce the chances of introducing and spreading the organism.

Once Listeria is introduced into the nonsterile environment, retail and factory conditions that promote its growth increase the risk of post-processing contamination. Several factors, including moisture, nutrients, temperature, competitive microflora and pH, affect the growth of Listeria in the food preparation and processing environment.  Moisture is the most crucial factor, as it is essential for microbial growth and is the most easily controlled of the factors.

Listeria tends to form a biofilm to enhance its survival when resident populations become established in the food prep/processing environment. The resident populations that are referred to as “persistent” are not easily eliminated by general cleaning and sanitizing procedures. Biofilm penetration is necessary for removal and inactivation of Listeria. The correct blend of chemical, contact time and agitation will aid in the removal. This combination dissolves the biofilm and the organic material to which it adheres, allowing the sanitizer to inactivate the released, sensitive cells.

 To learn more about Listeria from Gina and Jeff, check out their archived webinar with Food Safety Tech, Preventing Listeria Contamination: A Practical Guide to Food Safety ControlsBiofilm removal is important, because persistent L. monocytogenes can be dispersed from a biofilm into the environment and onto food processing equipment, and non-food contact and food-contact surfaces. Passive dispersal of Listeria can occur by aerosolization from high-pressure hoses or brushing; once aerosolized, Listeria can contaminate other growth niches in the food handling/processing area, eventually contaminating food contact surfaces and food. Another form of passive dispersal is the movement of processing equipment. If a biofilm is present, cells can be released by the movement or vibration of the equipment.

Inactivation of L. monocytogenes in biofilms is an important part of a Listeria control program. Understanding this face prompted our team to perform research with the University of Georgia using a mixed culture biofilm formed by Pseudomonas putida and L. monocytogenes to evaluate the ability of Chemstar’s foaming sanitizer to inactivate L. monocytogenes present in biofilms under realistic use conditions. The results revealed that it provides for a greater than four-log reduction.1

Identifying Listeria in the environment and eliminating the resident populations can reduce the risk of secondary contamination. Once these procedures are established, employee training and environmental monitoring are vital.  An effective Listeria control program requires that employees understand their role in mitigating the spread of Listeria, and management must relay those expectations. Control strategies are not likely to be effective if employees won’t cooperate, or don’t understand what they are expected to do, or why it is important, and that expected procedures or behavior will be monitored.

Reference

  1. Frank, J. and Mitchell, J. (December 3, 2010).  Evaluation of Chemstar foaming sanitizer for inactivating Listeria monocytogene in floor drain biofilms.
Join us for the Listeria Mitigation and Control Workshop at the Food Safety Consortium in Schaumburg, IL on November 17, 2015. Learn about the Five Key Elements in building an effective Listeria Control Program:

  1. Specific Sanitation Controls for Listeria
  2. Training of Personnel (they need to understand their role in the program)
  3. Traffic Control
  4. Targeted Environmental Monitoring and Testing
  5. Control Water Introduced into the Process Environment

The workshop will be a hands-on approach to learning about Listeria and practical solutions to take back and implement into your company’s sanitation program.

Dr. David Acheson is the Founder and CEO of The Acheson Group
Beltway Beat

A Mandatory GMO Labeling Ban—What Do You Think?

By Dr. David Acheson
2 Comments
Dr. David Acheson is the Founder and CEO of The Acheson Group

We’ve said this already: 50 different methods for labeling U.S. food products just aren’t realistic from both a practical as well as a cost standpoint. Thus, it is not surprising that we continue to see activity in this space from Congress.

The latest round from Congress would pre-empt state efforts and put the responsibility on federal food agencies. The move is a result of the voice-vote passage of The Safe and Accurate Food Labeling Act of 2015 (H.R. 1599) by the House Agriculture Committee. This bill would stop state GMO-regulatory efforts and ban mandatory GMO labeling. FDA would also develop a non-GMO labeling standard, similar to that of USDA’s organic labeling.

The bill, which is a substitute amendment of the original bill, will go to the House (which is expected to pass it) and then to the Senate (where passage is less certain).

If approved by Congress and signed by President Obama, H.R. 1599 would:

  • Pre-empt state-level efforts to enact mandatory GMO labeling laws, overturning the state GMO-labeling laws recently passed and prohibiting local regulation of GMO crops.
  • Create a voluntary, consistent federal process of certifying and labeling food products as non-GMO, while prohibiting the mandating of labeling for all GMO foods.
  • Allow the Secretary to require labeling of a GMO food if “(A) there is a material difference in the functional, nutritional, or compositional characteristics, allergenicity, or other attributes between the food so produced and its comparable food; and (B) the disclosure of such material difference is necessary to protect public health and safety or to prevent the label or labeling of the food so produced from being false or misleading in any particular.”
  • Require that manufacturers have written FDA certification that a GMO product is safe.

While “right-to-know” activists are pushing GMO labeling, some on the other side are saying that this bill recognizes that right to know about a food’s origin and production is similar to the current labeling of organic foods. Rather than requiring that food manufacturers label their products as non-organic, the USDA National Organic Program allows approved products—and only NOP-approved products—to be labeled as organic. Similarly, as proposed in the bill, a standard to be developed by FDA would allow food manufacturers to label approved products—and only approved products—as GMO-free. Thus, like organic, those concerned with GMOs could purchase products fitting their needs.

This is an important difference, especially regarding the perceived safety of food products. Research conducted by the PEW Research Center reveals that although 88% of scientists from the American Association for the Advancement of Science say GMO foods are safe to consume, 57% of the general public believe these foods are unsafe. If more than half of your potential consumers mistakenly believe your product is unsafe, that would certainly have significant effect on your company’s business. Again, it is a similar argument as that of organic, where supporters often promote the food as healthier, despite USDA’s repeated assertion that “organic” simply means organic, not better or healthier.

In addition to the pro- and anti-labeling sides, the controversy has long been about who should have the authority. As we’ve said before, establishing state laws (i.e., those already passed by Vermont, Connecticut and Maine) would create a patchwork of rules, and food manufacturers would have to adapt to 50 different sets of laws.

Fundamentally, the consumers right to know what they are eating is not only understandable but, to me, totally appropriate. Where this goes off the rails is when it comes to complex labeling requirements and a push to require food companies to put information on labels that is nice to know but not critical to know. Regulations should be about protecting the consumer, and until (or unless) we have solid science indicating GMO foods are a problem that requires a warning, let’s keep mandatory labels where they belong and information for curious consumers in places where they can access it easily using modern technology.

In the Food Lab

New Technology a Step Forward for Pesticide Analysis

By Richard Fussell
No Comments

Scientists have been challenged by the capability limits of gas chromatography high- resolution mass spectroscopy (GC-HRMS) systems for years. There has been interest in a high-resolution accurate mass (HRAM) system with applications in food safety, and a new GC-HRMS technology for pesticide analysis indicates a step forward in GC-MS analysis.

Mass Accuracy Benefits

At the recent 1st International Symposium on Recent Developments in Pesticides Analysis in Prague, Hans Mol, Ph.D., of the RIKILT Research Institute and Jana Hajslova, Ph.D., a professor at the Institute of Chemical Technology, Prague, presented new data obtained using a technology called the Q Exactive GC system  based on GC separation, electron ionization (EI) and detection using a hybrid quadrupole-Orbitrap mass spectrometer. Mol described the system as a promising and complementary method to LC-Orbitrap that together enable new comprehensive workflows for quantitative analysis of targeted compounds and qualitative screening of non-targeted compounds for both GC and LC amenable pesticides. He also discussed the advantages of excellent mass accuracy (<1 ppm) for each scan across a peak in a complex matrix, at a resolving power (RP) of 60,000, and the simplicity of one acquisition event to obtain multiple accurate mass ions that can make use of existing EI-MS libraries.View videos of the symposium

Resolving Power

As sample types increase in complexity, the resolving power of the mass spectrometer becomes a key factor in reliable pesticide detection. A study that examines high-efficiency broad scope screening of pesticides using GC-HRAM details the mass accuracy, acquisition rate, linearity, detectability, accuracy, precision and identification capability observed at high resolving power. The experiment revealed that 60K RP (m/z 200, full width half maxima, FWHM) was needed to discriminate analytes of interest from matrix components and thus achieve reliable results for pesticides spiked into animal feed. The results indicate that the new system, when used with specific screening software, is an effective tool for routine screening of pesticides in food and feed samples.

Similar experiments for the analysis of pesticides in baby food again demonstrated that full scan acquisition at high resolving power (60,000 FWHM at m/z 200) provided a sufficient number of scans across individual chromatographic peaks to obtain excellent measurement precision over a wide linear dynamic range. Based on retention time (±0.1 min window), accurate mass information (±2 ppm window), ion ratios, isotopic pattern similarity (measured versus theoretical), and library search hit (NIST14 all 132 pesticides spiked at 10 ng/g were detected and identified in acetonitrile extracts of baby food.  Overall the Q Exactive GC system provided selectivity at least if not better than, and quantitative performance comparable to, GC triple quadrupole MS.

Different Pesticides Screening Methods

Hajslova also discussed the use of the Orbitrap technology in two different pesticide screening methods. The first approach focused on the targeted screen for pesticides from a customized HRAM database and a review of data using software. The second method involved non-targeted screening using deconvolution of accurate mass data and spectral library matching with identification using accurate mass fragments. When analyzing pesticides in whiskey samples, Hajslova commented that she was surprised that many compounds where automatically identified.  Since a non-targeted method involves full scan data, it allows the identification of compounds that would go undetected in a targeted method.

Screening using high-resolution mass spectrometry is an effective way to increase the scope of analysis. Routine resolving power of 60,000 FWHM eliminates matrix interferences, increasing confidence in results when screening pesticides in complex matrices. Consistent sub-ppm mass accuracy ensures confident compound identification.

Resources on GC Orbitrap MS Technology

Fast Screening, Identification, and Quantification of Pesticide Residues in Baby Food Using GC Orbitrap MS Technology. Demonstrates the quantitative power of a GC triple quadrupole MS combined with the high precision, full scan high resolution/accurate mass capability.

High Mass Resolution is Essential for Confident Compound Detection. Describes how sub-ppm mass accuracy accelerates the identification of unknown peaks by allowing the use of narrow mass tolerances to reduce the number of suggested elemental compositions.

The Power of High Resolution Accurate Mass Using Orbitrap Based GC-MS discusses consistent mass accuracy achieved across a chromatographic peak, at low and high concentrations, at low and high masses, and for various compound classes and matrix types.

 

Cannabis Labs: The Need For Standardized Analytics

By Aaron G. Biros
No Comments

Laboratory testing is an integral part of the cannabis industry for the same reasons it is important in the food industry. To ensure the consumer is ingesting a safe product, accurate testing should be required for microbials, pathogens, pesticides, heavy metals, and perhaps most importantly dosage. Unfortunately, however, the problem is that testing requirements are not quite there yet in the handful of states that have legalized marijuana for recreational or medical purposes. This creates a degree of uncertainty in the marketplace, which is detrimental to the growth of the industry as a whole.

Cannabis samples are liquified in strong acid in a pressurized microwave prior to evaluation for heavy metal content. Image courtesy of Digipath, Inc.
Cannabis samples are liquified in strong acid in a pressurized microwave prior to evaluation for heavy metal content. Image courtesy of Digipath, Inc.

Lauren Finesilver, Executive Chef at Sweet Grass Kitchen, sits on a counsel for compliance with C4 (Colorado Cannabis Chamber of Commerce). Finesilver believes “We are a food manufacturer first and foremost so we need to ensure we sell a final product that is safe for the public and [one] that consumers know is coming from a responsible manufacturer.” Ahead of marijuana rule changes that are soon to come, Colorado’s Marijuana Enforcement Division (MED) announced five new rulemaking working groups, one of which will address testing, packaging, and labeling.

Some states, including Colorado and Nevada, have made impressive strides in implementing proper testing regulations.

“Nevada has done a really good job from the start in designing a program where they have at least addressed some of the issues with product quality including testing, labeling, and potency requirements,” says Tobias Paquet, Chief Scientific Officer of C3 Labs, LLC (Cannabis Chemistry Consulting).

Paquet, who previously worked at Waters Corporation as a field chemistry specialist, cites potential contamination at almost every step of the cannabis supply chain from seed to sale. “Some of the biggest concerns with contamination during cultivation or extraction are pesticides, heavy metals, and microbial contamination,” he says, adding that he is most concerned about two microbial carcinogens—mycotoxin and aflatoxins.

“We aim to provide reliable and consistent labeling that is accurate and reflects the contents of that product,” says Paquet. “This comes with a validated method on qualified instruments and laboratory accreditation.”

Determining the moisture content in a dried cannabis sample for adjusting potency numbers and checking for appropriate curing. Image courtesy of Digipath, Inc.
Determining the moisture content in a dried cannabis sample for adjusting potency numbers and checking for appropriate curing. Image courtesy of Digipath, Inc.

Much like the food industry, accurate testing across the board is needed for consumers to feel safe ingesting edibles containing marijuana. Laboratories that operate in states where marijuana is already legal need to utilize good laboratory practices and standards to ensure consistency.

“We have been working to create an accreditation process that is accepted on a national level,” says Roger Brauninger, biosafety program manager at the American Association for Laboratory Accreditation (A2LA). “Without firm state laboratory accreditation regulatory requirements in place, the possibility exists that people may shop laboratories to get the results they want. So if applied across the board, ISO 17025 accreditation would help reduce that, thereby helping to create greater consistency of tests results between laboratories, ultimately helping to reduce marketplace confusion.”

The cannabis industry has the momentum to become a safe and regulated marketplace as state reforms continue, with testing and analytics acting as the wind behind its sails.

Matt Karnes, founder and managing partner of GreenWave Advisors, LLC, suggests that by 2020, assuming full legalization occurs in all 50 states and D.C., the lab testing industry could easily reach $850 million (this figure includes testing, data analytics and consulting services). The firm provides an analysis of each state’s potential market size which is predicated on its U.S. retail marijuana forecast of $35 billion (again, assuming full legalization by 2020). Karnes was recently cited in a Forbes article suggesting that cannabis testing is one of a handful of top new technology investment opportunities.

Karnes’ predictions echo that of many when discussing the cannabis analytics space. “More states are becoming focused on standardized laboratory testing requirements,” he says. “There is really no consistency, which is something that needs to be worked out.”

While a handful of states work toward achieving good laboratory standards, players in the cannabis industry, including laboratories, dispensaries, and cultivators, continue to self-regulate when it comes to safety and quality.

CannabisIndustryJournal.com, our newest publication, will be launched in late September. CannabisIndustryJournal.com will educate the marketplace covering news, technology, business trends, safety, quality, and the regulatory environment, aiding in the advancement of an informed and safe market for the global cannabis industry. Stay tuned for more!

Traceability: Leveraging Automation to Satisfy FSMA Requirements

By Dr. Christine Paszko
No Comments

In America’s food supply chain, food is sourced globally. Since ingredients often come from multiple countries, inspection and quality control is challenging, as regulations, policies and processes differ in each country. Product management begins with the suppliers, from the fields where the foods are grown, to the pesticides and fertilizers used, to harvesting, washing, shipping, storing, and processing (manufacturers), and finally, to packaging and delivery to consumers.

Figure 1. LIMS will facilitate FSMA by providing complete traceability from farm to table, in addition to accelerating collaboration, communication and providing operational insight.
Figure 1. LIMS will facilitate FSMA by providing complete traceability from farm to table, in addition to accelerating collaboration, communication and providing operational insight. (Click to enlarge)

Figure 1 shows each step of the product management process can introduce contamination due to unsafe practices or other risks. As such, test data and traceability must begin in the field and end when the final product is delivered to the consumer. The Laboratory Information Management System (LIMS) captures all information to ensure that quality data is effectively managed, communicated, and easily and quickly accessible in the event of a contamination issue. The LIMS allows producers to provide authorities with the required sampling and testing documentation to prove compliance.

U.S. consumers expect their food products to be affordable, consistent, safe and unadulterated. Consumers have seen numerous food recalls in the news, and it has shaken their confidence. The CDC estimates that about one in six Americans (or 48 million people) get sick, 128,000 are hospitalized, and approximately 3,000 die of foodborne diseases each year. Global food directives for international food initiatives include CODEX, ISO (International Standards Organization), and the Global Food Safety Initiative (GFSI).

The U.S. Government has implemented various food safety programs, from Hazard Analysis & Critical Control Points (HACCP) to FSMA in order to identify and correct potential contamination in the food supply. In fact, one of the primary focuses of FSMA is preventive action based on risk assessment.

The food landscape has changed significantly, especially over the past decade, as consumers demand year-round fresh fruits, vegetables and juices, along with more exotic foods. The fact that U.S. food is globally sourced has resulted in numerous challenges in quality assurance, shipping, traceability, labeling, storage, blending, testing, and reporting.

Use LIMS to track and manage information in a relational SQL Server LIMS database
Use LIMS to track and manage information in a relational SQL Server LIMS database. (Click to enlarge)

For example, upon reading the labeling on an apple juice can, it is not uncommon to learn the juice has been possibly sourced from numerous countries including the United States, China, Brazil, Argentina, Chile and many other countries from the European Union. Oftentimes, labels state that ingredients may come from some of the countries listed, but it does not specify what percentage comes from each country or exactly from which country the product was sourced. Figure 2 shows how LIMS can track and manage this information in a relational SQL Server LIMS database.

A similar scenario is true for tracking hamburger meat: The meat that was used to make burgers can come from multiple ranches and hundreds of cows. Many consumers don’t understand why their food/beverage is blended in large ton batches, and producers want to reach the required final product specifications, while offering a consistent product and experience to the consumer. Blending has become commonplace in the food industry, and it makes traceability much more challenging. The same is true in blending different meats, for example regulators have found pork in products marked 100% beef, this has led to the use of molecular tests to determine if meat has been adulterated.

FSMA and Traceability

FSMA focuses on a preventive approach rather than reaction and response to foodborne outbreaks. A central focus is on traceability, involving a complete understanding of the complex food chain and conducting testing at the key control points that can introduce contamination. It is important to understand the source of all the raw ingredients that make up a final product as well as the details of where they are sourced, the CoA (Certificate of Analysis) report, other test results, and all associated documentation. These elements are especially important, because each region of the world has different approved testing methods and is challenged with different potential contaminants and processes. As a result, food manufacturers must manage a significant amount of information on all raw materials that they receive, along with the associated paperwork, which includes the CoA, confirmatory test data, and all plant, production and final product test data.

Case example. As operations scale, so does the testing. In order to manage all the testing, most laboratories turn to LIMS and laboratory automation to manage high throughput screening. A client that was performing nearly 1,000 Listeria tests per day was using an automated microbiological screening platform to complete this testing. They were struggling to hire more resources to manage and run the instrument, as the time was short and the increased sample volume was imminent. The goal was to automate testing from the nine plants that were submitting samples to the main laboratory, such that the entire process could be automated from the laboratory knowing how many samples were coming from each plant and from deploying pre-configured worklists to upload to the instruments. The instruments would then run the samples and send the result back into the LIMS. This integration alone saved more than six hours per day. In addition, the electronic data transfer was fast and error-free, and since the data was imported into the LIMS, any positives were automatically flagged in real time. This approach allows immediate action.

In addition, all data from shelf life studies and additional testing on the food product (i.e., pesticide testing, environmental testing for Listeria sp., mold, yeast, etc., formulations, and blending) can be managed in the LIMS, one centralized database.

How LIMS Supports FSMA

Over the years some manufacturers have relied on less-robust tools to manage and maintain testing data, from multiple Excel spreadsheets to paper log books. Challenges with using these tools include data corruptions, data loss, typographical errors, and accidental or malicious data changes. These systems are often costly, especially from a resource standpoint (i.e., data errors, hours spent interacting with the data for calculations, tracking samples, and manual report creation alone). In addition, creating reports for regulating authorities can be time-consuming and because there is no control over changes to the Excel sheets or logbooks, there is typically no audit trail, and because the data is not in the database, querying the data can be very difficult.

A quality LIMS will ensure that the organization is bullet-proof when it comes time for regulatory audits. It also provides a complete and secure solution to manage, track and monitor batches of product from farm to table. LIMS not only helps clients manage their regulatory compliance goals, but it also facilitates communication across the organization and provides laboratory intelligence that gives buyers insight into the best suppliers to purchase from, based on final product specification, consistency and pricing. Managers can also better understand when it is time to outsource testing based on workload data, allowing them to maximize their resources and profitably through more efficient operations. The system also accelerates communication: As soon as testing is completed, reports can be automatically emailed and alerts sent to cell phones, if any issues arise.

When dealing with perishable products, time is of the essence, LIMS save time. Table 1 lists just a few of major benefits of the LIMS in FSMA regulatory compliance.

Process/Requirement Advantage
Sample tracking and management Integrated barcode support (both 1D and 2D), manage all batch data, tests, from raw materials, in process testing to final packaged product testing
21 CFR Part 11 Compliance with electronic signature requirements
CoA Easily, automatically generate the CoA report once testing is completed, validated and approved
Specification Management Manage final product, supplier and customer specifications and pricing
Document Management Link all paperwork to Work Order for ready access and retrieval
Full Chain of Custody Automatically generated and linked to the order
Records data and all paperwork associated with product All paperwork that arrived with the raw ingredients, CoA, and shipping documentation or additional test data
Records all test results Automatic data import from instruments as well as hand entered data
Shelf-life Studies Setup, manage and track all aspects of shelf life studies
Formulations and Blending Manage and track as components and specifications for final product blends, and leverage predictive tools for optimal purchase options from suppliers
Audit Trail Track actions in the system and generate a report of all audits made to any result data
CAPAs (Corrective and Preventative Actions) Track and manage open CAPAs in the LIMS, and tie to testing results for easy management to increase customer satisfaction
Traceability back to the source (farm, country) and  forward to the store that it was shipped to, with key data (lot number, ship date, etc.) Users can view all components and associated test results, along with any notes on the final product, back to the supplier and forward to locations that offer the product to the consumer
Employee Training Manage employee training records and view Standard Operating Procedures online to ensure access to work instruction and provide evidence for audits
Instrument Management Manage all quality control data on the instruments used in the testing, as well as documented calibration data, maintenance, any repairs, or any issues. Users can link the PDF manual in the LIMS
Enterprise integration (ERP, SAP, SCADA, MES, SAS JMP) Data sharing allows users with permissions access to data when they need it, so that they can quickly view and monitor information they need to perform their job. Users can also view data with integrated statistical tools to view trends that may not be readily evident
Table I

A LIMS is a critical tool to the success of food companies. It organizes and securely manages all aspects of food testing, facilitates regulatory compliance, enhances communication within the organization, and maximizes productivity. Many food producers are concerned about protecting their brand and providing a high quality, consistent, and safe product to consumers while operating efficiently and at a profit. An LIMS allows them to meet these goals.

FST Soapbox

HACCP, HARPC, and How Using Software Helps

By Steven Burton
No Comments

With nearly one in every six Americans falling prey to foodborne illnesses each year, food safety is a major public health issue. For several decades, current Good Manufacturing Practices (cGMPs) provided the basic food safety framework for manufacturers. However, these guidelines were not sufficient to cover all potential food safety hazards. In the 1960s, NASA asked Pillsbury to manufacture the first foods for space flights, and so the Hazard Analysis & Critical Control Point (HACCP) system was born. HACCP was later endorsed by the Codex Alimentarius Commission, which was formed by the Food and Agriculture Organization of the United Nations and the World Health Organization in 1963.

HACCP is a global standard and its principles are the defining elements of ISO 22000, BRC and SQF, all premiere global food safety standards. In 1996, an E. coli outbreak in Scotland claimed 10 lives. The Pennington report in the aftermath of this tragedy recommended use of HACCP by all food manufacturers to ensure food safety. While HACCP is mandatorily used for seafood, juice and USDA-regulated meat processing, it could not win universal acceptance across the food industry; most of the food industry sectors rely on cGMP for providing a food safety framework.

The number of people affected by foodborne illnesses can be attributed to a flawed food safety system. Thinking caps were put on and President Obama’s administration rigorously pursued what it hoped would be an effective food safety paradigm. On July 4, 2012 Hazard Analysis and Risk Based Prevention Control (HARPC) was introduced under FSMA section 103. Although the system is still a work in progress and FDA has yet not disclosed the regulations that will determine the functionality of HARPC, the agency is bound to issue the regulations by August 30, 2015. HARPC will become effective 60 days following this date, and companies will be required to enforce HARPC within a period of 12 to 36 months, depending on the size of a facility.

HARPC is designed along the lines of HACCP but is meant to be more comprehensive. For a “Simple Simon” it would be tough to differentiate between the two, but HARPC provides an all-encompassing food safety structure by focusing on preventive controls to make food safety more iron clad. With the exception of exempted facilities, HARPC will apply to all facilities subjected to FDA’s Bioterrorism Facility Establishment registration. All such facilities will be expected to enforce a functioning and adequate HARPC plan. Failure to do so and FDA would be authorized to take legal actions such as issuing a public warning letter or an import alert (in case of a foreign supplier), initiating criminal proceedings against a non-compliant facility, or suspending food facility registration of a facility until requirements are met. By doing so, FDA has put the onus squarely on the shoulders of respective facilities. Companies will be required to do a lot more and should expect deeper FDA involvement. Expert help to enforce a rather complex HARPC protocol seems unavoidable; there is a fair chance that users could find themselves lost in the translation and may end up facing FDA’s wrath if their plan is inadequate. Let me break it down a bit more and distinguish the main differences between HARPC and HACCP.

Qualified Food Safety Experience. HARPC requires one member of a company to be the qualified individual to complete an entire food safety plan. This means that said individual has undertaken education from a credible institution and gained experience by completing it. HACCP requires at least one person to be HACCP certified, but the plan must be constructed by a team of people.

Process Flow Diagram. Under the HACCP standard, food safety plans must include a clear flow diagram outlining the process, from start to finish, that the ingredients will take throughout your facility. HARPC has no regulations regarding this.

Hazard Variables. Traditionally, hazards were limited to biological, chemical and physical hazards under the HACCP paradigm. Yet, under HARPC, you must also outline Radiological and Terrorism hazards.

Controlling Hazards. Here is largely where the main difference lies: How to control a hazard. HACCP requires companies to mention their critical control points as well as outline a prerequisite program (PRP), although this has no set requirements. HARPC requires you to apply a sanitation preventive control to the hazards, which looks at monitoring, confirmation, corrective action, reviewing records and re-analyzing.

Reviewing the Plan. HACCP requires the individual in charge to review all HACCP documentation every year. This is in comparison to HARPC, which requires a facility to reanalyze its plan every three years.

Recall Plans. Recalls, as required under HARPC, are a special type of incident, with all of the attributes necessary to create and manage a recall plan. HACCP does not have such a requirement.

Use Software to Implement HARPC Plan

Using software can make life easier when it becomes time to implement a HARPC plan. Documentation is an important part of the HARPC system, and software can help generate most of the documents used to establish the plan. Such a system can link regulatory requirements with procedures and customize several aspects of the system during run time.

A risk analysis component of software helps a user identify the likelihood and severity of a particular hazard (a HARPC requirement). HARPC also requires sanitation control procedures at food surface contact points; software features can support cross contamination points to which hazards are assigned and controlled. Software also allows users to define equipment, with a facility to schedule and record calibration, maintenance, and verification activities, including management task assignment to satisfy HARPCs provisions regarding sanitation of utensils and equipment. In addition, it has the provision to document procedures as required by HARPC and can also flag employees for refresher training if they are involved in a violation.

Software also enables users to electronically record inspections, which satisfies the obligation under HARPC to carry out an environmental monitoring program (for pathogen controls). Interestingly, sensors could also be integrated with logging facilities to automatically collect sensor data, which could then be used to send out alerts if there is an abnormality. Software systems can also accommodate coverage of allergen hazards and run a food allergen control plan, including documentation of the process.

An incident management plan can assign and track corrective actions, root causes, employee retraining tasks, and preventive measures to individuals, and recall plans can be created and managed using the system. As many inspectors prefer remote review of documentation, software can provide such remote access, allowing inspectors to conduct off-site document reviews. This process can reduce on-site inspection times from five to three days. A list of approved suppliers can be maintained as well, and these suppliers can be linked to receiving functions, enabling users to receive and maintain a detailed and comprehensive record of ingredients.

HARPC is a reality that will have to be embraced very soon. Using software is a simple solution for the tough times that lay ahead for the food industry. It can serve as an all-encompassing and one-stop-shop for businesses that need help enforcing HARPC plans.

Complacency Kills. What To Do Before a Recall

By Maria Fontanazza
2 Comments

A control point breakdown can lead to a food safety recall. Here’s what to expect, what to do, and how to move forward. But most importantly, this discussion with Alan Baumfalk, lead auditor and technical manager for Eurofins food safety systems, will focus on prevention and re-evaluating whether your company’s current plans will be effective in the wake of a recall.

Food Safety Tech: What is the role of the crisis management plan as it relates to a company’s food safety program?

Alan Baumfalk: The crisis management plan is an interwoven topic. Some people use crisis management or business continuity interchangeably, but they tend to have a bit of a different focus.

First of all, a crisis management plan usually goes together with a food safety plan, and in some cases, it is part of a food safety plan. We are all familiar with the food safety plan, which includes a HACCP plan (Hazard Analysis and Critical Control Points). HACCP consists of seven principles. We’re all involved in HACCP everyday; it’s related to everything we do. We identify the hazards that might be involved in the food we’re producing; we identify the hazards that might be involved in our daily lives (for example, we choose no to drive in rush hour traffic because of the potential hazards that might be involved).

This all fits into our food safety program where we try to eliminate risk through risk assessment. We establish critical limits of what we will and will not accept, and then we monitor and verify them. We take corrective actions when something we monitor is not within that critical limit. Verification involves verifying that what we’re monitoring is indeed being monitored, and finally, there is record keeping.

The crisis management team wants to prevent a recall, which is a crisis to the business, to the brand, and to the health and welfare to the public. No one wants to have a recall. When putting together this plan, you need to make sure you have a multidisciplinary team. It cannot consist of all sales people, nor can it be solely quality control people. You have to bring in people with certain expertise: Include people that are from legal, media/communications, and the business group.

FST: In preparing for a crisis, where does business continuity planning fit into the picture?

Baumfalk: Crisis management has two additional components—the business continuity plan and the food defense plan. They are not exactly the same, and they are not necessarily interchangeable. The business continuity plan is related to how you are going to continue your business if you have a situation that occurs. It can be a crisis that involves a buyer, an environmental hazard, or a physical hazard, for example.

Sometimes people will consider what is happening in the media right now. What happens if there’s an incidence at the local school and your employees have children there. What are you going to do and how will you respond? How will you continue to do business in a safe way?

When putting together a business continuity plan, you need to ask yourself, how are you going to cope with the business crisis and continue doing business.

  • Designate a senior manager who is in control of handling the organization and making the necessary decisions.
  • Identify a multidisciplinary crisis management team. Each person should have a specific responsibility (i.e., medical, regulatory services, contacting customers, suppliers and internal/external communications). Each team member should be prepared to respond to food safety issues.
  • Develop a contact list that includes legal and various experts in the industry.
  • Train employees.
  • Devise a worst-case scenario and practice, practice, practice. The plan should be tested rigorously and on an annual basis.

When we talk about a mock recall, one of the biggest deficiencies is that people don’t rigorously test it. The number one priority should be to have the plans in place and test them, and identify the weaknesses that you can correct. One of the biggest problems that may eventually cause a recall is complacency. The employees think they got it all covered. It’s important to note that an ounce of prevention is worth a pound of cure.

In Part II of this series, Baumfalk will make the connection between crisis management planning and food defense.

hemp-infused tea

Hemp-Infused Beverages: FDA Compliance and the Cannabis Industry

By Aaron G. Biros
1 Comment
hemp-infused tea

With cannabis-infused edibles gaining a bigger market share in 2014 (See the marijuana edibles regulatory update here), it comes as no surprise that cannabis-infused beverages are growing in popularity. Some of these beverage manufacturers operate in a very interesting legal environment because of the differentiation between compounds found in hemp and marijuana, two different varieties of cannabis.

“Under federal legislation, there is an exemption for hemp and as long as we process our CBD (Cannabidiol) molecules from the hemp plant, we are allowed to sell our products federally,” says Chris Bunka, CEO of Lexaria, a company that makes a hemp-infused tea.

hemp-infused tea
Lexaria’s ViPova black tea infused with CBD oil made from industrial hemp

A number of scientific research studies have suggested that the compound CBD has medical properties that can help mitigate symptoms like inflammation, anxiety, chronic pain, and much more.

Because of the federal exemption for hemp, Lexaria can enjoy interstate commerce and other freedoms that manufacturers using marijuana flowers do not, such as access to banking services. Dried marijuana flowers contain the psychoactive compound, Tetrahydrocannabinol (THC). This compound is responsible for the regulatory and legal schism between the states that have legalized marijuana and the federal government, which still considers it to be a Schedule I narcotic.

Much unlike a number of marijuana edibles manufacturers operating in states where marijuana is currently legal, hemp-infused beverage manufacturers operate in full FDA compliance.

Michael Christopher, founder of Loft Tea, is working with a laboratory and bottler that are both 100% FDA compliant. “We definitely operate up to and abide by all FDA best practices with our laboratory and as far as producing and handling material we use best manufacturing practices and processes,” says Christopher.

“We have to partner with a bottler and laboratory who have the reputation to build trust with our brand as an industry leader in safety and quality,” says Christopher. “Until the FDA gives us complete guidelines on cannabis-infused products, we will continue to operate above and beyond best manufacturing practices with our infusions.”

Because these manufacturers view their hemp tea as a health and wellness product, it is only a matter of time before we see these types of products lining the shelves of health-food stores nationally. However, before this happens, an FDA regulatory framework specific to hemp-infused products is needed to address this growing industry.

“The hemp infusion industry has a lot of opportunity when presented in the right framework,” Christopher says. “There is still education needed in the marketplace to get it to the point where it will be on the shelves in stores like Whole Foods.”

Until that time comes, expect to see a steady growth of interest and inquiry from consumers, manufacturers, and regulators alike in the cannabis industry, whether federally legal or not.